首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、精心选一选——慧眼识金(每小题3分,共30分)1.已知1-(3m-5)2有最大值,则方程5m-4=3x 2的解是()A.79B.79C.-97D.-792.解方程1-2(x-1)-4(x-2)=0,去括号正确的是()A.1-2x 2-4x-8=0B.1-2x 1-4x 2=0C.1-2x 2-4x 8=0D.1-2x-2-4x-8=03.解方程2x 13-106x 1=1,去分母正确的是()A.4x 1-10x 1=1B.4x 2-10x-1=1C.4x 2-10x 1=6D.4x 2-10x-1=64.四位同学解方程x-13-x 62=42-x,去分母分别得到下面四个方程:①2x-2-x 2=12-3x;②x-2-x-2=12-3x;③2(x-1)-(x 2)=3(4-x);④2(x-1)-2(x 2)=3(4-x).其中错误的是()A.②B.③C.②③D.①④5.解方程4(y-1)-y=…  相似文献   

2.
解分式方程的基本方法是在方程两边都乘以各分式的最简公分母,约分后化为整式方程而求解.但对于有些分式方程,若根据其结构特征,采用某些特殊的解法,可以使解题过程变得更简捷.下面我们来看几个具体的例子.一、移项合并法例1解方程6=x-x.x-6x-6解:移项,得x=x-6,即x=x-6.x-6x-6x-6因为x-6,所以x=1.≠0经检验,是原方程的根.x=12 x=x-2.x练习解方程x-2(答案:1)二、分子相等法例2解方程4=5.x 32x 3解:原方程可化为20=20,即5(x 3)4(2x 3)5(x 3)=4(2x 3).解得x=1.经检验,是原方程的根.x=1练习解方程2=3.x 12x 3(答案:-3)三、等式性质法例3解方程x-…  相似文献   

3.
一◆一、概念题1.一元二次方程(m-1)x2-3x-2=0 ,其中二次项为,二次项系数为,一次项为_______,一次项系数为,常数项为.(我们首先要做的事情是确定m-1≠0,即m≠1)2.关于x的方程mx2 - nx - mx + nx2 = p,(m+n≠0)可整理为,则二次项为,一次项为,常数项为.而二次项系数为,一次项系数为.3.AB=0圳A = 0或B = 0.请用语言表达其含义:.4.不解方程,判断下列方程实根的个数①x(x-1)+3=0,②x2 - 22姨x+2=0,③23x2- 6=2x.5.一元二次方程2x2 - 3x + 4 = 0,两个根分x1x2 = .◆二、基础题6.用4种不同的方法解方程(x - 2)2 - 4(x +7.…  相似文献   

4.
<正>在解决有关一元二次方程的问题时,有些同学常常因为忽视"0"而惹祸,出现错解.下面举例说明,希望同学们引以为戒,不犯或少犯这类错误.一、忽视因式可能为"0"例1解方程:2(x-3)=3x(x-3).错解两边同除以(x-3),得2=3x,x=2/3.剖析错解在方程两边同除以(x-3),就是认为x-3≠0,其实是不对的,x-3可以为0,所以错解失去了一个根.  相似文献   

5.
移项是解方程的一个重要步骤,灵活运用移项的方法可以使运算简化.现举几例说明.例1解方程:3-x=4x-2.解法一:移项,得-x-4x=-2-3.合并同类项,得-5x=-5.系数化为1,得x=1.解法二:移项得:3+2=4x+x.合并同类项,得5=5x.系数化为1,得x=1.同学们把两种解法比较一下,哪种方法更好些?显然解法二更好,这样可避免符号出现差错.例2解方程:x-13〔x-13(x-9)〕=19(x-9).分析:先去中括号,把右边的19(x-9)作为一个整体移到左边,这样比较简便.解:去中括号,得x-13x+19(x-9)=19(x-9).移项,得x-13x+19(x-9)-19(x-9)=0.合并同类项,得23x=0.数学系数化为1,得x=0.例3已…  相似文献   

6.
“1”的妙用     
“1”是不可缺少的一个数,目然数中它排首位,实数里是单位。它有许许多多的妙用之处,本文所谈到的仅是这些应用中的沧海一粟。一、1=a÷a=a×1/a(a≠0) [例1] 解方程: (x-1)/(x 1) (x-4)/(x 4)=(x-2)/(x 2) (x-3)/(x 3)解:((x-1)/(x 1) 1) ((x-4)/(x-4) 1) =((x-2)/(x 2) 1) ((x-3)/(x 3) 1) ∴2x/(x 1) 2x/(x 4)=2x/(x 2) 2x/(x 3)。∴ x=0或1/(x 1) 1/(x 4)=1/(x 2) 1/(x 3) (2x 5)/(x 1)(x 4)=(2x 5)/(x 2)(x 3) ∴ 2x 5=0 x=-5/2。或(x 1)(x 4)=(x 2)(x 3)但无解  相似文献   

7.
<正>在求解数学问题时,某些问题的结论中常常会用到连词"或"、"且".若不能正确区分这两个连词的不同用法,便很容易导致错误的发生.例1解方程3x2-16x+5=0.解原方程可变形为(3x-1)(x-5)=0,∴3x-1=0,或x-5=0,∴x=1/3,或x=5.点评这里x=1/3与x=5之间必须用"或"来连接.因为要使原方程成立,因式(3x  相似文献   

8.
1.方程组{ax+y=a~2 x+ay=1 有多少解? 2.方程组{ax+y+z=1 x+ay+z=a x+y+az=a~2 有多少解?3.解方程|x-1|+|x-2|+|x-3|=x。 4.解方程(x+3-4(x-1)~(1/2)~(1/2)+(x+8-6(x-1)~(1/2))~(1/2)=1。5.下列方程是否有实根?  相似文献   

9.
好多同学解完题后,喜欢相互之间对一下结果或询问老师正确的结果,若结果相同或正确,则以为解答正确,殊不知,有时结果正确解答未必正确.本文以几道代数题为例,分述如下:一、关于分式运算例1计算:22x+3+33-2x-2x+159-4x2.解法1原式=22x+3-32x-3+2x+15(2x+3)(2x-3)=4x-6-6x-9+2x+15=0.解法2原式=22x+3-32x-3+2x+15(2x+3)(2x-3)=4x-6-6x-9+2x+15(2x+3)(2x-3)=0.分析:解法1混淆了分式的加减运算与分式方程的求解,误用“去分母”,违背了分式加减的运算法则,故解法1是错误的.二、关于根式运算例2化简:a-ba√+b√(a>0,b>0).解法1a-ba√+b√=(a-b)(a…  相似文献   

10.
一位入学才半个学期的初一学生,只了解什么是方程和方程的解,他可能解出下列方程吗?这12个方程是多彩多姿的:(1)x(x+1)=20;(2)x+x1=331;(3)x3-2=25;(4)(x-2)4=1;(5)x10-1024=0;(6)12[21(12x+2)+2]+2=4;(7)12[21(12x2+2)+2]+2=4;(8)x-1=3;(9)x-1+x-3=2;(10)x-1+x-2+x-3=21;(11)xx=256;(12)x x x=16.作者曾到多所学校试教,惊喜发现初一同学大都能够愉快解出以上方程,而且诀窍只是一句短语:“盯着未知数!”用著名数学教育家波利亚(G·polye)的话说,就是:“看着终点,记住你的目的、勿忘你的目标、想着你希望得到的东西.”解方程只要盯着那个x,…  相似文献   

11.
一、考查基本概念例 1 .(1 )当式子 |x|- 5x2 - 4 x- 5的值为零时 ,x的值是 (  )A.5;  B.- 5;  C.- 1或 5;  D.- 5和 5。(2 )当 x=时 ,分式 2x- 1 无意义。 (2 0 0 0年江苏省杨州市、徐州市中考题 )分析 :一般地 ,中考试题主要考查分式 NM在什么情况下有意义、无意义和值为零的问题 ,当 M≠ 0时 ,分式 NM有意义 ;当 M=0时 ,分式 NM无意义 ;当 N=0且 M≠ 0时 ,分式 NM=0 ,据此可得 :(1 ) x=- 5,(2 ) x=1。二、考查基本性质例 2 .不改变分式2 x- 52 y23x y的值 ,把分子、分母中各项系数化成整数 ,那么结果是 (   )A.2 x- 1 5y4x …  相似文献   

12.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

13.
在一元一次方程的求解过程中,一些初学者由于忽视了变形前后的同解性,常会出现这样那样的错误.现就几类比较常见的病例,简要分析如下.一、解题格式不对致错例1解方程5x-2=3x 4.错解:5x-3x=4 2=2x=6=x=3.评析:这里混淆了方程的同解变形和代数式的恒等变形,解方程进行同解变形时不能用等号连等.二、移项不变号致错例2解方程5x 1=3x 7.错解:5x 3x=7 1.解得:x=1.评析:移项法则掌握不牢,方程中的项从等式的一端移到另一端时,一定要改变原来的符号.三、去括号忘记法则致错例3解方程5x-2(8-x)=6x-3(4-x).错解:5x-16-x=6x-12-x.移项、合并同类项,得-…  相似文献   

14.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

15.
解分式方程的基本思想是去分母转化为整式方程,常用的转化途径是在方程的两边都乘以最简公分母.对于某些问题,利用拆项方法,可使解分式方程的过程巧妙、简捷.例1.解方程xx-5=xx--62解:不难发现,xx-5=(x-x-5)5 5=1 x-55,x-2x-6=(x-x6-)6 4=1 x-46∴1 5x-5=1 x-46∴x-55=x-46∴5(x-6)=4(x-5)解之,得x=10经检验,x=10是已知方程的解.例2.解方程x-4x-5-xx--65=xx--87-xx--98解:已知方程化为(1 1x-5)-(1 x-16)=(1 x-18)-(1 x-19)∴1x-5-x-16=x-18-x-19∴-1x2-11x 30=x2-1-71x 72∴x2-11x 30=x2-17x 72解之,得x=7.经检验,x=7是已知方程的解.例3.解…  相似文献   

16.
《一元二次方程》一章是初中数学的重要内容,要准确掌握这些内容,必须注意以下几个问题.1利用求根公式分解二次三项式时,不能漏掉二次项系数例:把4x2+8x-1分解因式.解:方程4x2+8x-1=0的根是许多同学常常会漏掉二次项系数这个常数因子4.2要注意“失根”解一元二次方程,不仅要注意舍去“增根”,还要注意不能“漏根”.例:解方程(x-2)2=(x-2).许多同学在方程的两边都除以x-2得方程的根为x=3.这是错误的.因为在解方程的过程中忽视了x-2=0而失根.事实上,当x-2=0即x=2时,等式仍成立.正确的解法应为:3使用判别式时…  相似文献   

17.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

18.
例1已知实数x满足x2 1x2 x 1x=0,试求x 1x的值.解析:可将x 1x看作一个整体,设它为y,得y=1或-2,当x 1x=1时方程无解,则x 1x只能等于-2.此题由解分式方程演变而来,暗设陷阱,解题时,若忽视“x是实数”这个条件,将求得的值不加以检验直接写出,则前功尽弃.例2若关于x的分式方程x-1x-2-x-2x 1=2x ax2-x-2有唯一的实根,则()(A)a可为任何实数.(B)a=-7或a=-1.(C)a≠-7且a≠-1.(D)a≠-7或a≠-1.解:将分式方程化为整式方程可得x=a 52,由原方程中x≠-1,且x≠2,得a 5≠-2且a 5≠4,即a≠-7且a≠-1,故选择(C).例3当k为何值时,关于x的分式方程xx 1=4x kx2 …  相似文献   

19.
一、选择题1.下列根式 ,是最简二次根式的是 (   )( A) 32       ( B) 122( C) ab2 ( D) a b22 .不是同类二次根式的一组是 (   )( A) 2和 8( B) 13和 3( C) 4x和 x ( D) 2 a和 a3.当 x<- 1时 ,化简 ( x 1) 2 =(   )。( A) x 1( B) - x- 1( C) - x 1( D) x- 14.方程 x2 =5x- 6的一般形式是 (   )( A) x2 - 5x 6=0 ( B) x2 - 5x=6( C) x2 5x- 6=0 ( D) x2 5x=65.配方法解方程 x2 - 2 x=1,正确的是 (   )( A) ( x- 1) 2 =1( B) ( x- 1) 2 =2( C) ( x- 2 ) 2 =2 ( D) ( x- 2 ) 2 =56.下列方程中 ,两根的和是 3、两根…  相似文献   

20.
●第一步关注一元二次方程一般形式ax2 bx c=0(a≠0)中“a≠0”的条件.“a≠0”是一元二次方程一般形式的重要组成部分,只有当a≠0时方程ax2 bx c=0才是一元二次方程.例1下列方程(1)ax2 bx c=0,(2)k2 5k 5=0,(3)(m-3)x2-x-1=0,(4)(m2 3)x2 樤3x-2=0是关于x的一元二次方程的是(只填序号).【分析】(1)、(3)不一定是一元二次方程,应分别添加条件a≠0,m≠3才行;(2)不是关于x的一元二次方程;(4)m2 3>0,是一元二次方程.答案:(4).例2已知关于x的方程(m 樤3)x2-1 2(m-1)x-1=0,m应取何值使方程为一元二次方程或是一元一次方程.【分析】此题要根据一…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号