首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

2.
1 命题若 AD为 Rt△ ABC的斜边 BC上的高 ,则 1AD2 =1AB2 1AC2 .图 1证明 如图1 ,因 AB⊥ AC,AD⊥ BC,故 AB· AC= AD· BC,于是  1AD2 =BC2AB2 · AC2 =AB2 AC2AB2 · AC2 =1AB2 1AC2 .2 应用例 1 在 Rt△ ABC中 ,∠A=90°,以CB,CA,AB为轴将△ ABC旋转一周所得几何体的体积分别记为 Va,Vb,Vc,试证明 :1V2a= 1V2b 1V2c.证明 如图 1 ,有Vb=13πAB2·AC,Vc=13πAC2 · AB,Va=13πAD2·BD 13πAD2·DC  =13πAD2 · BC=13πAD· AB·AC.故  1V2b 1V2c=1( 13πAB· AC) 2( 1AB2 1…  相似文献   

3.
20 0 2年黑龙江省中考试题中有这样一道题 :曙光中学有一块三角形形状的花圃ABC ,现可直接测量到∠A =30°,AC =4 0m ,BC =2 5m .请你求出这块花圃的面积 .图 1解 :如图 1 ,过C作CD⊥AB于D .在Rt△ADC中 ,由∠A =30°,AC =4 0 ,求得CD =2 0 .AD =AC·cos 30° =2 0 3.在Rt△CDB中 ,由CD =2 0 ,BC =2 5,有BD =BC2 -CD2 =1 5.所以 ,S△ABC=12 AB·CD =12 (AD +BD)·CD=( 2 0 0 3+ 1 50 ) (m2 ) .图 2以上解答似乎无懈可击 ,但若仔细审题 ,就会发现 :由题设条件可以作出如图 1的三角形 ,还可以作出如图 2的三角形 ,因而…  相似文献   

4.
三角形的面积 :S=底×高 ÷ 2 .应用面积关系图 1求解 ,有时可使解题简章明了 .1 利用面积的不变性解题例 1 如图 1,在Rt△ABC中 ,∠C =90° ,AC =4 ,BC =3,CD ⊥AB于D ,求CD .解析 在Rt△ABC中 ,由勾股定理得 ,AB =5,而S△ABC =12 BC·AC =12 AB·CD ,即BC·AC =AB·CD ,故CD =BC·ACAB =2 .4 .结论 1 直角三角形斜边上的高等于两条直角边的积除以斜边的商 .例 2  (《几何》第二册第 2 4 8页B组第 2题 )如图 2 ,矩形ABCD中 ,AB =a ,BC =b ,M是BC的中点 ,DE ⊥AM ,E是垂足 ,求证DE =2ab4a2 +b2 .解析 根…  相似文献   

5.
一、延长根据已知条件 ,延长一条或几条线段 ,构成所需图形。例 1.已知 :四边形 ABCD中 ,∠ BAD=60°,∠ B=∠ D=90°,BC=11,CD=2。求 :对角线 AC的长。分析 :在 Rt△ ABC中 ,BC是已知的 ,若求出 AB的值 ,问题即可解决。设法把 AB放到另一个直角三角形中 ,延长 AD交 BC的延长线于点 E。这样 ,在 Rt△ CDE中 ,求出 CE值 ,然后得出BE值 ;在 Rt△ ABE中 ,得出 AB值 ;最后 ,在 Rt△ ABC中 ,求出AC的值。二、连结如连结多边形的对角线、三角形的中位线和梯形的中位线 ,从而可以利用它们的定理来解决问题。例 2 .在△ ABC中…  相似文献   

6.
在解梯形问题时,常常需要添作辅助线,其目的就是将梯形问题转化为同学们所熟悉的平行四边形和三角形来解决.下面举例说明梯形中常用的辅助线的作法郾一、作梯形的高例1如图1,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,MA=MB,∠BMC=75°,∠AMD=45°.求证:BC=CD郾证明作AE⊥BC于E郾∵AD∥BC,∴DC=AE郾∵∠AMB=180°-75°-45°=60°,MA=MB,∴△AMB为正三角形郾∴AB=BM郾又∵∠ABE=60°+15°=75°=∠BMC,∴Rt△ABE≌Rt△BMC郾∴AE=BC郾∴BC=CD郾二、作梯形的中位线例2如图2,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O…  相似文献   

7.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

8.
“解直角三角形”一章中,最常用的思想方法是数形结合。在解决问题时,先要根据题意画出图形,再借助于图形的直观性,分析有关边角关系,进而进行计算。事实上,除数形结合的思想方法外,转化思想、方程思想在本章中也有较广泛的应用。一、转化思想所谓用转化思想解题,就是把不熟悉的问题转化为熟悉的问题来解决。 1.将斜三角形的问题转化为解直角三角形问题例1如图,在△ABC中, AB=5,AC=7,∠B=60°,求BC的长。  相似文献   

9.
勾股定理是直角三角形的一个重要性质, 与其逆定理相结合揭示了直角三角形三边之间数与形的对应关系,体现了数学的数形结合思想.下面就其应用举例如下.一、利用勾股定理进行计算例1 已知:Rt△ABC 中,∠C=90°,AD、BE分别为BC、AC边的中线,AD= 2 10~(1/2),BE=5.求AB的长.分析:因为∠C=90°,AB是Rt△ABC的斜  相似文献   

10.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

11.
掌握了解直角三角形的知识后,我们手中又多了一个解题工具.但是解题中经常遇到的三角形并不是直角三角形,这时怎么办呢?遇到这种情况,不妨根据题意,结合图形,遇“斜”化“直”,即会柳暗花明.现举几例说明.例1(2002年重庆市中考试题)如图1,在△ABC中,∠A=30°,tanB=13,BC=10√,则AB的长为.分析在△ABC中,由条件∠A=30°,tanB=13,可想到遇“斜”化“直”的方法.即过点C作CD⊥AB于D.于是在Rt△BDC中,CDDB=13.设CD=x,则DB=3x(x>0).由勾股定理得x2+(3x)2=(10√)2,即x=1(负根舍去).在Rt△ADC中,∠A=30°,所以AD=3√·CD=3√.因此…  相似文献   

12.
有一类习题需要把不规则的图形补成规则的图形或熟悉的图形 ,从而使问题得到转化和解决 ,这种处理问题的方法称为“补形”。1 .补成直角三角形例 1 .已知 :如图 1 ,四边形 ABCD中 ,∠ A=∠ C=90°,AD=5,CB=3,∠ D=60°,求 CD的长。分析 :此题若按常规解法 ,需将 CD置于三角形中 ,若连结AC或 BD,不能充分利用已知条件 ,通过补形构造一个直角三角形可使问题得到解决。解 :延长 AB、DC相交于 E,∵∠A=90°,∠ D=60°,∴∠E=30°。∴ DE=2 AD=1 0 ,BE=2 CB=6。∴ CE=BE2 - BC2 =3 3。∴ CD=1 0 - 3 3。2 .补成等腰三角形例 2 …  相似文献   

13.
直角三角形是一种特殊的三角形,它具有许多重要性质,特别是勾股定理及其逆定理在初中数学中有着广泛的应用,因此根据问题的图形特征,添加适当的辅助线,巧妙构造直角三角形,往往能够迅速找到解题途径.现略举几例解析如下:例1如图1,△ABC是边长为2的正三角形,E是AB边的中点,延长BC至D,使CD=BC,连接ED,求ED的长.解:连接AD,因为AC=CD,所以△ACD是等腰三角形,所以∠ADB=∠DAC,因为∠ACB=∠ADB ∠DAC,而∠ACB=60°,所以∠ADB=30°,又∠B=60°,所以∠BAD=90°,则△BAD是直角三角形,所以AD2=BD2-AB2=42-22=12,在Rt△EAD中…  相似文献   

14.
在初中阶段,特殊角的三角函数值主要是运用勾股定理、直角三角形的特殊性推导出来的,特殊角有30°、45°、60°。对于15°的三角函数值也可以运用特殊角(30°、45°、60°)的三角函数值、勾股定理、直角三角形的特殊性质来推导。方法一:如图1,设Rt△ABC中,∠A=15°,∠C=90°。D是AC上的一点,∠BDC=30°,则∠ABD=15°,AD=BD。设BC=x,则AD=BD=2x,DC=3√x,AC=(3√+2)x∴AB=AB2+BC2√=[(3√+2)x]2+x2√=(6√+2√)x,∴sin15°=sinA=BCAB=x(6√+2√)x=6√-2√4。同样可得:cos15°=6√+2√4,tan15°=2-3√,cot15°=2+3√。图1方法…  相似文献   

15.
一、把四边形问题转化为三角形问题来解例1 已知:四边形ABCD中,∠B=∠D=90°,AB=4·CD=2,∠A:∠C=1:2,求AD和BC的长. 解:延长BC、AD交于E.则△ABE,、△CDE为直角三角形.  相似文献   

16.
很多几何题的解决都依赖于添置辅助线 ,其中通过“补形” ,将一些不规则的图形转化为规则的基本图形 ,特别是转化为一些特殊的图形 ,然后再利用它们的特性来解题 ,充分体现了转化思想、化归方法的妙用 .一、巧用 60°角构造直角三角形或等边三角形例 1 已知 :如图 1 ,在四边形ABCD中 ,∠A =60°,∠B =∠D =90°,BC =1 ,AD =2 .求 :四边形ABCD的面积 .解  分别延长AB、DC ,设交于点E ,∵∠A =60° ,∠D =90°,∴∠E =30°.在直角三角形ADE中 ,∵AD =2 ,∴AE =4,DE =2 3,在直角三角形BCE中 ,∵BC =1 ,∴BE =3,S四边形ABCD…  相似文献   

17.
学习了锐角三角函数的知识后 ,同学们都知道 ,应用锐角三角函数的知识可以解直角三角形 .那么遇到斜三角形怎么办 ?例如 ,1 998年广西的中考就命了这样一道关于斜三角形的计算题 :例 1 已知 :如图 1 ,△ABC中 ,∠B =30°,∠C =45°,AB -AC =2 -2 ,求BC .怎样求解这类问题 ?求解这类问题的基本思想方法是什么 ?解决这类问题的基本思想方法是 :通过作斜三角形某边上的高 ,把斜三角形分解为两个直角三角形 ,从而把斜三角形问题转化为直角三角形问题 ,然后用锐角三角函数和直角三角形的有关性质求解 .上述问题的解法是 :作AD⊥B…  相似文献   

18.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

19.
如何求 tan 15°?学生时常为这个问题所困扰,笔者经研究发现:利用特殊角(30°,45°和60°)之间的关系巧妙地构造几何图形,不难找到一些简捷、精当的方法,下面以含30°的直角三角形为基本图形,商榷几种求 tan 15°值的方法.基本图形:如图1,在Rt△ABC 中,∠C=90°,∠ABC=30°,AC=1.基本结论:AC:BC:AB=1:3~(1/2):2,即 AB=2,BC=3~(1/2),∠A=60°.1 以30°角为顶角,构造等腰三角形方法1:如图2,延长 BC 至 D 点,使 BD=AB,连结 AD.由作法可知,BD=AB=2,∠CAD=15°.所以CD=BD-BC=2-3~(1/2).  相似文献   

20.
C 三角 如图 (1), CD是△ ABC的形形状;延拓高,当点 C在 CD上运动时,易得如下结论: AC2+ BC2=AB2 Rt△ ABC. (1) AC2+ BC2>AB2锐角 △ ABC. (2) AC2+ BC2 AC2=AD· AB或 BC2=BD· AB或 CD2=BD· AD Rt△ ABC.(4) AC2>AD· AB或 BC2>BD· AB或 CD2>BD· AD 锐角△ ABC.(5) AC2 我们称 (1)(2)(3)为勾股式,称 (4)(5)(6)为射影式 .利用勾股式和射影式判断三角形的形状,十分方便 . 例 1、已知三角 解: ∵ 42+ 52>62形三边长为 4、 5、 6, ∴它是锐角三角形 .则此三角形为一一 例 2、…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号