首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
命题1过椭圆xa22 yb22=1上点P(异于长轴端点)作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于P).求证直线AB的斜率为定值.证明:设P(x0,y0),A(x1,y1),B(x2,y2).直线PA的斜率为k,则直线PB的斜率为-k.由y=k(x-x0) y0b2x2 a2y2=a2b2消去y得(b2 a2k2)x2 2k(y0-kx0)a2x a2(y0-kx  相似文献   

2.
直线和圆锥曲线位置关系中的综合问题能有效地考查同学们的思维品质和创新能力,因此成为高考解析几何问题重点考查的热点内容,既常考不衰,又创新不断.1代点作差通性通法例1过M(1,1)的直线交双曲线x42-y22=1于A、B2点,若M为弦AB的中点,求直线AB的方程.解法1显然直线AB不垂直于x轴,设其斜率为k,则其方程为y-1=k(x-1).由x24-y22=1,y-1=k(x-1)消去y得(1-2k2)x2-4k(1-k)x-2k2 4k-6=0.①设A(x1,y1),B(x2,y2),则x1、x2是方程①的2个根,又由于M为弦AB的中点,所以x12 x2=2k(1-k)1-2k2=1,所以k=21.经检验,当k=21时方程①的判别式大于零,所以直线…  相似文献   

3.
在高三数学复习教学中,遇到如下的一个问题:如图1,已知抛物线C:y=x2,过点P(0,2)的直线交抛物线于M、N两点,曲线C在点M、N处的切线交点为Q,求证:点Q必在同一条直线上.证明:设M(x1,y1),N(x2,y2),则y1=x21,y2=x22,过点M,N的切线方程为联立得y-x21=2x1(x-x1)y-x22=2x2(x-x2),解得x=  相似文献   

4.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

5.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

6.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

7.
2006年福建省高三质检理科卷21题:如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.(1)直线l与抛物线有唯一公共点,求l的方程;(2)直线l与抛物线交于A、B两点.(I)记FA、FB的斜率分别为k1、k2,求k1+k2的值;(II)若点R在线段AB上,且满足AR AQRB=QB,求点R的轨迹方程.本题在(2)(I)中求k1+k2的值,其值恰好为0,这个结论在一般情况下能否成立?是否可以延伸?直线AB、FA、FB的斜率之间是否存在某种特定关系?本文结合巧妙的化“1”证法探究如下:A O x R y Q F B性质1设抛物线y2=2px(p>0)的焦点为F,相应于焦点F的准线与x轴交…  相似文献   

8.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

9.
数学综合题常常是高考试卷中的把关题和压轴题,在高考中举足轻重.高考的区分层次和选拔使命主要靠这类题型来完成预设目标.近几年高考数学综合题已由单纯的知识叠加型转化为知识、方法和能力综合型,尤其是创新能力型试题.综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点.下面举例谈谈高考数学综合题的基本解题策略.一、避实就虚,整体求解【例1】抛物线C的方程为y=ax2(a&lt;0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).(Ⅰ)求抛物线C的焦点坐标和准线方程;(Ⅱ)设直线AB上一点M,满足BM=λMA,证明线段PM的中点在y轴上;(Ⅲ)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围.解析(Ⅰ)由抛物线C的方程y=ax2(a&lt;0)知,焦点坐标为0,41a,准线方程为y=-41a.(Ⅱ)设直线PA的方程为y-y0=k1(x-x0),直线PB的方程为...  相似文献   

10.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

11.
在解解析几何综合题时经常要碰到直线过 x轴上定点 (a,0 )的问题 ,且在高考中也频频出现 ,如 1983年压轴题、1993年压轴题、1996年压轴题等都涉及到这个问题 ,而在客观题中几乎年年有这样的考题 .但在解题时一般同学都用常规的点斜式法设直线方程为 y=k(x- a) ,有些情况由于设直线不恰当 ,从而使运算繁琐 ,有时还会使问题陷入僵局 .例 1 已知过定点 P(2 ,0 )的直线 l交抛物线 y2 =4x于 A,B两点 ,求三角形 AOB(O为坐标原点 )面积的最小值 .图 1解 设直线 l的方程为 y=k(x- 2 ) ,与抛物线方程 y2 =4x联立 ,消去 y得 k2 x2 - 4(k2 1) x …  相似文献   

12.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A…  相似文献   

13.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

14.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

15.
浙江大学出版社出版的《高中数学竞赛专题讲座》中P68有这样一道题:如图1所示,过抛物线y2=x上的一点A(1,1)作抛物线的切线,分-别交x轴于D,交y轴于B,点C在抛物线上,点E在线段AC上,满足(AE)/(EC)=λ1,点F在线段BC上,满足(BF)/(FC)=λ2,且λ12=1,线段CD与EF交于点P,当点C在抛物线上移动时,求点P的轨迹方程.现摘录原文解答如下:解:过抛物线上点A的切线斜率为k=2x|x=1=2,切线AB的方程为y=2x-1.所以B、D的坐标  相似文献   

16.
一、忽视特殊情况【例1】过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有A.1条B.2条C.3条D.0条错解:设直线的方程为y=kx 1,联立y2=4x,y=kx 得(kx 1)2=4x,即:k2x2 (2k-4)x 1=0,再由Δ=0,得k=1,得答案A.剖析:本题的解法有两个问题:一是将斜率不存在的情况漏掉了,二是将斜率k=0的情形丢掉了.故本题应有三解,即直线有三条.小结:直线与抛物线只有一解时,并不一定相切,因为直线与抛物线的对称轴平行时,也只有一解.二、忽视焦点位置【例2】设双曲线的渐近线为:y=±32x,求其离心率.错解:由双曲线的渐近线为:y=±23x,可得:ba=23,从…  相似文献   

17.
2014年高考山东文科卷压轴题:在平面直角坐标系中,椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√3/2,直线y=x被椭圆C截得的线段长为4√10/5. (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点, (i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积最大值. 本文将本题第(Ⅱ)问第(i)小问作一般化推广,并将结论类比到双曲线.  相似文献   

18.
浙江省 2 0 0 3年高中会考试题 3 3 ,是一道源于教材高于教材的好试题 .题目 已知椭圆C1 :x21 2 +y26=1 ,圆C2 :x2 +y2 =4,过椭圆C1 上的点P作圆C2 的两条切线 ,切点为A、B .( 1 )当点P的坐标为 ( -2 ,2 )时 ,如图 1 ,求直线AB的方程 ;( 2 )当点P(x0 ,y0 )在椭圆上运动但不与椭圆的顶点重合时 ,如图 2 ,设直线AB与坐标轴围成的三角形面积为S ,问S是否存在最小值 ?如果存在 ,请求出这个最小值 ,并求出此时点P的坐标 ;如果不存在 ,请说明理由 .分析 :( 1 )直线AB方程为 :y =x+2 ;( 2 )由题意 ,切线PA、PB的斜率存在 ,连结OA .设A(x…  相似文献   

19.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

20.
本文介绍圆锥曲线标准方程的两个用定比λ表示的斜率公式及解题时的巧妙应用.定理1若AB是椭圆Γ1:b2x2 a2y2=a2b2(a>b>0)或双曲线Γ2:b2x2-a2y2=a2b2或抛物线Γ3:y2=2px(p>0)的焦点弦,F为焦点且AF=λFB,(A在B之上),则弦AB所在直线斜率k满足k2=(λ 1)2(λ-1)2e2-1(λ≠0,λ≠±1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号