首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

2.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

3.
In this paper, a decentralized adaptive backstepping control scheme is proposed for a class of interconnected systems with nonlinear multisource disturbances and actuator faults. The nonlinear multisource disturbances comprise of two parts: one is the time-varying parameterized uncertainty; the other is the dynamic unexpected signal formulated by a nonlinear exogenous system. For each subsystem, the disturbances are compensated by an adaptive controller based on several dynamic signals and the bound estimation approach. Moreover, the effect of the actuator faults is tackled in spite of the fact that the faults may change in different cases infinite times. Meanwhile, through several smooth functions, the interactions among the subsystems are successfully disposed. As a result, the tracking errors can converge to an arbitrarily small value by choosing the design parameters appropriately. The proof of the closed-loop system stability is completed. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

4.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

5.
This paper considers the distributed adaptive fault-tolerant control problem for linear multi-agent systems with matched unknown nonlinear functions and actuator bias faults. By using fuzzy logic systems to approximate the unknown nonlinear function and constructing a local observer to estimate the states, an effective distributed adaptive fault-tolerant controller is developed. Furthermore, different from the traditional method to estimate the weight matrix, only the weight vector needs to be estimated by exchanging the order of weight vectors and fuzzy basis functions in the fuzzy logic systems. In contrast to the existing results, the assumption that the dimensions of input vector and output vector are equal is removed. In addition, it is proved that the proposed control protocol guarantees all signals in the closed-loop systems are bounded and all agents converge to the leader with bounded residual errors. Finally, simulation examples are given to illustrate the effectiveness of the proposed method.  相似文献   

6.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

7.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

8.
The problem of decentralized adaptive control is investigated for a class of large-scale nonstrict-feedback nonlinear systems subject to dynamic interaction and unmeasurable states, where the dynamic interaction is related to both input and output items. First, the fuzzy logic system is utilized to tackle unknown nonlinear function with nonstrict-feedback structure. Then, by combining adaptive and backstepping technology, the proper output feedback controller is designed. Meanwhile, a fuzzy state observer is proposed to estimate the unmeasurable states. The proposed controller could guarantee that all the signals of the resulting closed-loop systems are bounded. Finally, the applicability of the proposed controller is well carried out by a simulation example.  相似文献   

9.
This paper presents a novel approach to address the decentralized fault tolerant model predictive control of discrete-time interconnected nonlinear systems. The overall system is composed of a number of discrete-time interconnected nonlinear subsystems at the presence of multiple faults occurring at unknown time-instants. In order to deal with the unknown interconnection effects and changes in model dynamics due to multiple faults, both passive and active fault tolerant control design are considered. In the Active fault tolerant case an online approximation algorithm is applied to estimate the unknown interconnection effects and changes in model dynamics due to multiple faults. Besides, the decentralized control strategy is implemented for each subsystem with the model predictive control algorithm subject to some constraints. It is showed that the proposed method guarantees input-to-state stability characterization for both local subsystems and the global system under some predetermined assumptions. The simulation results are exploited to illustrate the applicability of the proposed method.  相似文献   

10.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

11.
In this paper, a novel approach for the design of an indirect adaptive fuzzy output tracking excitation control of power system generators is proposed. The method is developed based on the concept of differentially flat systems through which the nonlinear system can be written in canonical form. The flatness-based adaptive fuzzy control methodology is used to design the excitation control signal of a single machine power system in order to track a reference trajectory for the generator angle. The considered power system can be written in the canonical form and the resulting excitation control signal is shown to be nonlinear. In case of unknown power system parameters due to abnormalities, the nonlinear functions appearing in the control signal are approximated using adaptive fuzzy systems. Simulation results show that the proposed controller can enhance the transient stability of the power system under a three-phase to ground fault occurring near the generator terminals.  相似文献   

12.
This paper investigates the adaptive fuzzy control design problem of multi-input and multi-output (MIMO) non-strict feedback nonlinear systems. The considered control systems contain unknown control directions and dead zones. Fuzzy logic systems (FLSs) are utilized to approximate the unknown nonlinear functions, and the state observers are designed to estimate immeasurable states. By constructing a dead zone compensator and introducing a Nussbaum gain function into the backstepping technique, an adaptive fuzzy output feedback control method is developed. The proposed adaptive fuzzy controller is proved to guarantee the semi-globally uniformly ultimately bounded (SGUUB) of the closed-loop system, and can solve the control design problems of unmeasured states, unknown control directions and dead zones. The simulation results are given to demonstrate the effectiveness of the proposed control method.  相似文献   

13.
This paper focuses on an adaptive fuzzy fixed-time control problem for stochastic nonstrict nonlinear systems with unknown dead-zones by using dynamic surface control (DSC) technology. Fuzzy logic systems (FLSs) and DSC technology are used to approximate nonlinear functions and reduce the computational complexity, respectively. At the same time, the influence of the dead-zone disturbance is offset by transforming the dead-zone model into the nonlinear model that can be approximated by the FLSs. Then, based on the fixed-time stability theory, an adaptive fuzzy fixed-time tracking control strategy is proposed, which can ensure semi-global practical fixed-time stability of the system and the tracking error converging to a small neighborhood near the origin. Finally, two simulation examples are given to prove the effectiveness of the proposed control strategy.  相似文献   

14.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

15.
The tracking problem of the fractional-order nonlinear systems is assessed by extending new event-triggered control designs. The considered dynamics are accompanied by the uncertain strict-feedback form, unknown actuator faults and unknown disturbances. By using the neural networks and the fault compensation method, two adaptive fault compensation event-triggered schemes are designed. Unlike the available control designs, two static and dynamic event-triggered strategies are proposed for the nonlinear fractional-order systems, in a sense that the minimum/average time-interval between two successive events can be prolonged in the dynamic event-triggered approach. Besides, it is proven that the Zeno phenomenon is strictly avoided. Finally, the simulation results prove the effectiveness of the presented control methods.  相似文献   

16.
The decentralized tracking control methods for large-scale nonlinear systems are investigated in this paper. A backstepping-based robust decentralized adaptive neural H tracking control method is addressed for a class of large-scale strict feedback nonlinear systems with uncertain disturbances. Under the condition that the nonlinear interconnection functions in subsystems are unknown and mismatched, the decentralized adaptive neural network H tracking controllers are designed based on backstepping technology. Neural networks are used to approximate the packaged multinomial including the unknown interconnections and nonlinear functions in the subsystems as well as the derivatives of the virtual controls. The effect of external disturbances and approximation errors is attenuated by H tracking performance. Whether the external disturbances occur or not, the output tracking errors of the close-loop system are guaranteed to be bounded. A practical example is provided to show the effectiveness of the proposed control approach.  相似文献   

17.
This study focuses on the research of the globally asymptotic tracking problem of unknown nonlinear reaction-diffusion equations with time-varying coefficients and uncertain external disturbance. Firstly, fuzzy logic systems and adaptive bounding technique are used to deal with nonlinear reaction-diffusion equations with time-varying coefficients and uncertain external disturbance. Secondly, a novel global state feedback adaptive fuzzy control algorithm is proposed to make the nonlinear reaction-diffusion equations track the target systems globally and asymptotically. In addition, the globally asymptotic tracking condition can be obtained, which overcomes the semi-global results in the existing literatures. Finally, three simulation examples are given to illustrate the feasibility and effectiveness of the proposed control protocols.  相似文献   

18.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

19.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

20.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号