首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
已知数列{an}的递推关系式为an+1=f(an),若存在实数a使得f(a)=a,则a称为数列{an}的不动点,在递推式an+1=f(an)中若令an+1=an=x,则方程f(x)=x的解就是数列{an}的不动点,方程f(x)=xc叫做递推式aa+1=f(an)的特征方程.利用不动点,可将某些由递推关系所确定的数列转化为等差、等比数列.下面举例说明.1 an+1=pan+q(其中p、q为常数,p≠0,q≠0)型  相似文献   

2.
设数列{an}满足一阶递推关系:an+1=pan+q.当P≠1且P≠0,q≠0时,数列{an)非等差、等比数列.其通项公式有两种求解思路. 思路1-转化为等比数列求其通项公式在an+1=pan+q中,两边同减去q/1-p得an+1-q/1-p=p(an-q/1-p).  相似文献   

3.
类型1 an+1=pan+q(p≠1,q≠0)对这种类型一般是用待定系数法构造等比数列.令an+1+λ=p(an+λ),与已知递推式比较,得λ=q/(p-1),从而转化为{an+q/(p-1)}是公比为p的等比数列.  相似文献   

4.
文[1]给出了求一类递推数列通项公式的若干技巧,读后颇受启发.文[1]指出:“若数列{an}有递推式pan qan ran s=0,其中 1?1p、q、r≠0,当p q r=0时,可变形为rsan?an= 1(an?an)?,这时用换元法不p?1p难求得数列的通项公式;当p q r≠0时,则用换元法无法解答,只能用公式法解答.”但事实并非如此,其实与“p q r=0”的情形类似,当p q r≠0时,同样可以用换元法解答.当s=0时,在原递推式两边同时加上λan,并整理为qr/pan λan=(? 1 λ)(an?an),p?q/p λ?1r/p再令λ=?,解出λ的值,即可用换元?q/p λ法求解;当s≠0时,在原递推式两边同加上λan μ,并整理…  相似文献   

5.
在数列中,递推问题是一个十分重要的问题.其中由a1=a,pan 1=qan十b,(n∈N ,a,p,q,b均为常数,且p≠0,q≠0,以下同)型递推公式求通项公式an是递推数列中一个典型问题,对它的解决方案的研究有一定的价值.1 由a1=a,pan 1=qan b求数列{an}的通项公式的解决方案 当p=q时,pan 1=qan b可化为 an 1=an b/p. 此时,数列{an}是等差数列,且其公差为b/p,因此可按等差数列进行求解,即  相似文献   

6.
<正>数列问题中,我们会碰到由各种各样递推关系给出的数列.求这类数列的通项公式的方法也不少,但其中有一类数列我们经常碰到,这类数列的递推关系为an+1=pan+qrn(p≠1),当r=1时递推关系为an+1=pan+q.这类数列{an}求解的问题可以考查等差  相似文献   

7.
数列的递推关系是给出数列的一种重要方法 ,2 0 0 0~ 2 0 0 3年的高考试题都有涉及及数列递推关系的题目 ,而由数列的递推关系确定数列的通项往往是解决数列问题的关键 ,同时也是对学生进行数学思想方法教学的重要载体 ,比如参数法、叠加法、迭代法、换元法、构造法等 .下面笔者对常见的几种数列递推关系的求通项策略进行解析 .类型 1:an+ 1 =p an +q解析 :当 p =1时数列为等差数列 ,当 q =0 ,p≠ 0时数列为等比数列 .当 p≠ 1,p≠ 0 ,q≠ 0时 ,引入参数λ,令an+ 1 -λ =p( an -λ) ,整理得 an+ 1 =pan+( 1-p )λ,由 ( 1-p)λ=p,所以λ=q1-…  相似文献   

8.
数列是高中数学的重要内容,也是高考考查的重点,特别是递推数列,在数学问题中的广泛应用越来越引起人们的重视.下面就递推数列在排列组合与概率应用题中的应用作探讨,以供参考.一、递推式为an=pan-1 q(p、q为常数且p≠1)这类数列求通项方法为构造等比数列an p-q1或{an-an-1}.例  相似文献   

9.
对于函数f(x),若存在x_0∈R,使f(x_0) =x_0成立,则称x_0为函数f(x)的不动点.数列与函数密切相关.对于a_(n 1)=(pa_n q)/(ra_n s)型递推数列,利用不动点可以妙求其通项公式.先推导a_(n 1)=pa_n q(p≠1)型递推数列的通项公式.∵p≠1,所以存在α满足α=  相似文献   

10.
本文给出了由特征方程的根求解具有递推关系an=pan-1+q(其中p,q是常数、p≠0,1)数列通项公式的简便方法.  相似文献   

11.
由数列的递推公式求通项公式是数列的重要内容.在这类问题中,最简单的递推公式是a1=a,an+1=kan+b(k≠0)(当k=1时,它就是等差数列;当b=0时,它就是等比数列).我们可以设an+1+m=k(an+m),其中m是待定的常数.比较系数可得m=b/(k-1)(k≠1),故an+m=(a1+m)kn-1,an=[a+b/(k-1)]kn-1-b/(k-1).下面结合具体的问题,用待定系数法求简单的一阶递推数列的通项公式.  相似文献   

12.
<正>已知数列{an}满足:an=pan-1+qan-2(n∈N+,n≥3),给定a1及a2(a12+a22≠0),其特征方程为x2-px-q=0(※),判别式△=p2+4q.文[1]作者经过探究给出了此类数列的周期性具有如下结论:(1)当△>0时,当且仅当p=0且q=1时,对于任意的a1及a2(a12+a22≠0),数列{an}是周期数列.特别地,a1≠a2时,数列{an}是以2为周期的周期数列;a1=a2时,数列{an}是以1为周期的周期数列(即常数数列).(2)当△=0时,当且仅当p=2、q=-1且a1=a2时,数列{an}是以1为周期的周期数列(即常数数列),或p=-2、q=-1且a2=-a1时,数列{an}是以2为周期的周期数列.  相似文献   

13.
对于函数f(x),若存在x0∈R,使f(x0)= x0成立,则称x0为函数f(x)的不动点.数列与函数密切相关.对于an 1=(pan q)/(ran s)型递推数列,利用不动点可以巧妙求其通项公式.先推导an 1=pan q(p≠1)型递推数列 (r、s=0的情形)的通项公式.  相似文献   

14.
文[1]中给出了满足递推关系 an+1=p+q/an (1)(其中p为非零常数,q为正常数)的数列{an}的通项公式,并据此证明了当此数列有两项相等时,其必为常数列(各项均相等). 下面我们将取消"p为非零常数,q为正常数"这一限制而考虑更广泛的情形,得出有两项相等且满足(1)的数列的完全分类.主要结论是:  相似文献   

15.
形如an+1=pan+q(p≠0,q≠1)类型的递推数列及其变型的通项公式的求法,是高考中考查的热点和重点问题,也是学生掌握的难点。下面从解题通法的角度举例剖析。  相似文献   

16.
由递推关系a_(n 1)=pa_n q(p,q为常数,而且p≠0,p≠1)给出的数列,为方便起见不妨称其为等比差数列。经过简单的变形,这类数列就化为以p为公比的等比数’列,其递推关系为:a_(n 1) q/p-1=p(a_n q/p-1),这样要解决等比差数列的问题就归结为简单的等比数列的问题.在实际中,许多由递推关系式给出的数列表面上看去似乎很复杂,但经过适当的变形与化简,就可化为等比差数列。  相似文献   

17.
在递推数列问题中,a_(n 1)=pa_n q(p,q为常数,p≠1)是最基本的形式,许多其它类型的递推数列,都可以化归与转化为该形式,从而使问题迎刃而解.  相似文献   

18.
李东文 《考试周刊》2011,(88):78-78
命题1:在数列{a}中a,已知首项a,且n≥2时,a=pa+q(p≠1,q≠0),则称方程x=px+q为数列{a}的一阶特征方程,其特征根为x=,数列{a}的通项公式为a=(a-x)p+x. 由以上命题可知,对于递推关系形如a=pa+q(p≠1,q≠0)的数列可以通过解特征方程x=px+q,构造等比数列{a-x},求{a}的通项.  相似文献   

19.
形式为 a n + 1 =pa n + s/qa n + r , p,q,r,s ∈ R的线性分式递推数列是高中数学数列部分常见题型。本文从初等数学的角度:化归思想,取倒数,转化等差(或等比)数列,给出形式为a n + 1 =pa n + s/qa n + r的线性分式递推数列的通项公式及周期存在的判定,并举例说明其价值。  相似文献   

20.
1定义 满足a1=r,a2=s且an+2=Pan+1+qan(n∈N+,p,q,r,s是实常数)的数列{an}叫做二阶线性递推数列. 下面介绍这种数列通项公式的求法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号