首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 - 3.6 years, height 1.68 - 0.54 m, body mass 67.1 - 11.7 kg; mean - s ) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake ( V O 2 ) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest V O 2 measured during the test was recorded as V O 2max (mean = 3.18 - 0.35 l· min -1 ). Peak power (380 - 63.2 W) and mean power (368 - 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 - 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), V O 2max (l· min -1 ), V O 2max (ml·kg -1 ·min -1 ), V O 2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent V O 2max ) and V E max (l·min -1 ) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time 2000 =- 0.163 (Power)14.213 ·( V O 2max l· min -1 ) + 0.738· (Fatigue) + 567.259 ( R 2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while V O 2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

2.
Abstract

We evaluated (1) the test–retest reliability of the Wingate test conducted on a rowing ergometer, and (2) the sensitivity of this test in determining the differences in performance attained by 12- to 18-year-old rowers. Altogether, 297 male rowers aged 12.0–18.9 years (mean ± s: 14.8 ± 1.7) completed a maximal 30-s test on a rowing ergometer, and 80 rowers representing all age groups were retested after 5–7 days. No change was evident in participants' performance in terms of mean power output (P = 0.726; Cohen's d = 0.04), maximal power output (P = 0.567; Cohen's d = 0.06), and minimum power output (P = 0.318; Cohen's d = 0.11) in the second test. The intra-class correlation coefficients were high (≥0.973) and coefficients of variation were low (≤7.3%). A series of analyses of variance were used to compare the performances among 12- to 18-year-old rowers, and age-related increases in performance were evident (P < 0.001; Cohen's d = 1.91–1.96). The age-related increases in performance were similar, although reduced, when the effects of body mass were partitioned out when using analysis of covariance (P < 0.001; Cohen's d = 0.82–0.85). The results suggest that: (1) the described test is reliable and can be used for maximal-intensity exercise assessment in youth rowing, and (2) it discriminates performance among 12- to-18-year-old rowers.  相似文献   

3.
ABSTRACT

Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W’) and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W’ (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15–30, 30–45, 45–60 and 60–75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience.  相似文献   

4.
Although it is clear that rowers have a large muscle mass, their distribution of muscle mass and which of the main motions in rowing mediates muscle hypertrophy in each body part are unclear. We examine the relationships between partial motion power in rowing and muscle cross-sectional area of the thigh, lower back, and upper arms. Sixty young rowers (39 males and 21 females) participated in the study. Joint positions and forces were measured by video cameras and rowing ergometer software, respectively. One-dimensional motion analysis was performed to calculate the power of leg drive, trunk swing, and arm pull motions. Muscle cross-sectional areas were measured using magnetic resonance imaging. Multiple regression analyses were carried out to determine the association of different muscle cross-sectional areas with partial motion power. The anterior thigh best explained the power demonstrated by leg drive (r 2 = 0.508), the posterior thigh and lower back combined best explained the power demonstrated by the trunk swing (r 2 = 0.493), and the elbow extensors best explained the power demonstrated by the arm pull (r 2 = 0.195). Other correlations, such as arm muscles with leg drive power (r 2 = 0.424) and anterior thigh with trunk swing power (r 2 = 0.335), were also significant. All muscle cross-sectional areas were associated with rowing performance either through the production of power or by transmitting work. The results imply that rowing motion requires a well-balanced distribution of muscle mass throughout the body.  相似文献   

5.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

6.
Abstract

The objective of this study was to determine whether sprint performance is related to the mechanical (elongation – force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle – tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle – tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = ?0.567, P = 0.003). For the elongation – force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle – tendon unit.  相似文献   

7.
Abstract

The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake ([Vdot]O2max), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute [Vdot]O2max was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

8.
This case study reports the results of a 12-year (2005–2016) follow-up study of two Olympic champion rowers. The rowers were prospective athletes at the junior level when the study began, and we monitored their relevant physiological and performance data annually. Our findings indicated that their V?O2max gradually increased up to about 22 years of age and leveled off at a value of approximately 7 l·min?1 with minimal fluctuations thereafter. However, the variables that directly influence the V?O2max changed. There was an age-related decline in maximal heart rate of about 0.5 beats·year?1, while oxygen pulse, which serves as an indirect measure of stroke volume, correspondingly increased by about 1 ml O2·beat?1 per year, allowing the athletes to maintain exceptional V?O2max values. Maximal minute power of the studied rowers, derived each year from their ramp-wise tests, closely resembled the mean power output sustained during the 2000-m all-out tests on a rowing ergometer. A 12-year improvement of 28% and 33% occurred for the mean power output sustained over 2000 and 6000-m on a rowing ergometer, respectively. The findings contribute to the body of knowledge on athletes representing the true elites of their respective sports.  相似文献   

9.
We evaluated (1) the test-retest reliability of the Wingate test conducted on a rowing ergometer, and (2) the sensitivity of this test in determining the differences in performance attained by 12- to 18-year-old rowers. Altogether, 297 male rowers aged 12.0-18.9 years (mean?±?s: 14.8?±?1.7) completed a maximal 30-s test on a rowing ergometer, and 80 rowers representing all age groups were retested after 5-7 days. No change was evident in participants' performance in terms of mean power output (P?=?0.726; Cohen's d?=?0.04), maximal power output (P?=?0.567; Cohen's d?=?0.06), and minimum power output (P?=?0.318; Cohen's d?=?0.11) in the second test. The intra-class correlation coefficients were high (≥0.973) and coefficients of variation were low (≤7.3%). A series of analyses of variance were used to compare the performances among 12- to 18-year-old rowers, and age-related increases in performance were evident (P?相似文献   

10.

Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men (M age ± SD = 22 ± 2 years) and 20 women (M age ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle actions of the leg extensors at a velocity of 180°/s while surface EMG signals were detected from the vastus lateralis, rectus femoris, and vastus medialis. The dependent variables were initial, final, and average peak torque; percent decline; the estimated percentage of fast-twitch fibers for the vastus lateralis; and the linear slope coefficients and y-intercepts for normalized EMG MNF versus repetition number. The data were analyzed with independent-samples t tests and 2-way mixed-factorial analyses of variance. Results: The mean initial, final, and average peak torque values for men were greater than those for women. There were no mean differences for percent decline and the estimated percentage of fast-twitch fibers for the vastus lateralis. There were also no sex differences for the linear slope coefficients, but there were differences among the muscles (vastus medialis>vastus lateralis>rectus femoris). The mean y-intercept for the vastus lateralis for men was greater than that for women. Conclusions: Men demonstrated greater peak torque values than those for women, but the declines in peak torque and normalized EMG MNF were similar between the sexes. The vastus medialis was more fatigue-resistant than both the vastus lateralis and rectus femoris.  相似文献   

11.
Lumbar spine injury in rowers is common and ergometer rowing has been cited as a risk factor for this injury. The purpose of this study is to compare lumbar kinematics between ergometer and single scull rowing and to examine the effect of fatigue on kinematics. The sagittal lumbar spine motion of 19 elite male rowers (lumbar spine injury free in the previous six months) was measured with an electrogoniometer during a ‘step test’ on an ergometer and in a single sculling boat. Maximum range of lumbar flexion was recorded in standing for reference. Power output and heart rate were recorded during the ergometer tests. Heart rate was used as a surrogate for power output in the sculling test. Maximum lumbar flexion increased during the step test and was significantly greater on the ergometer (4.4° ± 0.9°change), compared with the boat (+1.3° ± 1.1°change), (3.1°difference, p = 0.035). Compared to the voluntary range of motion, there is an increase of 11.3% (ergometer) and 4.1% (boat). Lumbar spine flexion increases significantly during the course of an ergometer trial while changes in a sculling boat were minimal. Such differences may contribute to the recent findings linking ergometer use to lower-back injury.  相似文献   

12.
Back injury is common in rowers. Asymmetrical lower limb reaction force on the foot stretchers during rowing may compromise trunk biomechanics and lead to back injury. However, such a mechanism remains putative. Therefore, this study examined lower limb reaction force in experienced rowers with and without a history of back injury. Six rowers who suffered from back injury for more than one week in the past year and another 19 rowers who were never injured performed maximal exertion rowing on a fixed-head rowing machine for 30 strokes. Peak force, average and peak loading rate of the lower limb reaction force during the middle 10-stroke were recorded using strain-gauge transducers placed at the foot stretchers. Asymmetries and intra-limb variability were quantified as asymmetry indices and coefficients of variation, respectively. No significant asymmetry was observed in all selected kinetic parameters between the injured and healthy rowers (p = 0.448–0.722, Hedges' g = 0.162–0.310). Subgroup analyses also did not reveal any significant kinetic differences between injured and healthy scullers or sweepers (p = 0.194–0.855, Hedges' g = 0.203–0.518). Rowers with a history of back injury, regardless of the rowing types, did not demonstrate greater lower limb reaction force asymmetry when compared with healthy rowers.  相似文献   

13.
ABSTRACT

This study aimed to compare mechanical variables derived from torque-cadence and power-cadence profiles established from different cycle ergometer modes (isoinertial and isokinetic) and modelling procedures (second- and third-order polynomials), whilst employing a novel method to validate the theoretical maximal power output (Pmax). Nineteen well-trained cyclists (n = 12 males) completed two experimental sessions comprising six, 6-s maximal isoinertial or isokinetic cycling sprints. Maximal pedal strokes were extracted to construct power–cadence relationships using second- and third-order polynomials. A 6-s sprint at the optimal cadence (Fopt) or optimal resistance (Topt) was performed to assess construct validity of Pmax. No differences were found in the mechanical parameters when derived from isokinetic (Pmax = 1311 ± 415, Fopt = 118 ± 12) or isoinertial modes (Pmax = 1320 ± 421, Fopt = 116 ± 19). However, R2 improved (P < 0.02) when derived from isoinertial sprints. Third-order polynomial modelling improved goodness of fit values (Standard Error, adjusted R2), but derived similar mechanical parameters. Finally, peak power output during the optimised sprint did not significantly differ from the theoretical Pmax in both cycling modes, thus providing construct validity. The most accurate P-C profile can be derived from isoinertial cycling sprints, modelled using third-order polynomial equations.  相似文献   

14.
Abstract

The purpose of this study was to compare changes in aerobic condition, strength, and muscular endurance following 8 weeks of endurance rowing alone or in combination with weight-training. Twenty-two elite rowers were assigned to (1) rowing (n = 10, 250–270 km · week?1) or (2) rowing (n = 12, 190–210 km · week?1) plus four weight-training sessions each week. Pre and post mean and standardized effect-size (ES) differences in aerobic condition (watts at 4 mmol · L?1) and strength (isometric pull, N), prone bench-pull (6-repetition maximum, 6-RM), 5- and 30-repetition leg-press and 60-repetition seated-arm-pull (J, performed on a dynamometer) normalized by body mass and log-transformed were analysed, after adjusting for gender. The standardized differences between groups were trivial for aerobic condition (ES [±90% CI] = 0.15; ±0.28, P = 0.37) and prone bench-pull (ES = 0.27; ±0.33, P = 0.18), although a moderate positive benefit in favour of rowing only was observed for the seated-arm-pull (ES = 0.42; ±0.4, P = 0.08). Only the weight-training group improved isometric pull (12.4 ± 8.9%, P < 0.01), 5-repetition (4.0 ± 5.7%, P < 0.01) and 30-repetition (2.4 ± 5.4%, P < 0.01) leg-press. In conclusion, while gains in aerobic condition and upper-body strength were comparable to extensive endurance rowing, weight-training led to moderately greater lower-body muscular-endurance and strength gains.  相似文献   

15.
Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m2) participated in 3 sprint interval training sessions separated by 3 to 7 days between each session during a period of 1 month. The 1st visit was familiarization to 6 cycling sprints; the 2nd and 3rd visits involved a warm-up followed by 6 30-s cycling sprints. Each sprint was followed by 4 min of passive (resting still on the ergometer) or active recovery (pedaling at 1.1 W/kg). The same recovery was used within each visit, and recovery type was randomized between visits. Results: Active recovery resulted in a 0.6 W/kg lower peak power output in the second sprint (95% confidence interval [CI] [ ? 0.2, ? 0.8 W/kg], effect size = 0.50, p < .01) and a 0.4 W/kg greater average power output in the 5th and 6th sprints (95% CI [+0.2,+0.6 W/kg], effect size = 0.50, p < .01) compared with passive recovery. There was little difference between fatigue index, total work, or accumulated work between the 2 recovery conditions. Conclusions: Passive recovery is beneficial when only 2 sprints are completed, whereas active recovery better maintains average power output compared with passive recovery when several sprints are performed sequentially (partial eta squared between conditions for multiple sprints = .38).  相似文献   

16.
The rowing stroke is a leg-driven action, in which forces developed by the lower limbs provide a large proportion of power delivered to the oars. In terms of both performance and injury, it is important to initiate each stroke with powerful and symmetrical loading of the foot stretchers. The aims of this study were to assess the reliability of foot force measured by footplates developed for the Concept2 indoor ergometer and to examine the magnitude and symmetry of bilateral foot forces in different groups of rowers. Five heavyweight female scullers, six heavyweight female sweep rowers, and six lightweight male (LWM) rowers performed an incremental step test on the Concept2 ergometer. Vertical, horizontal, and resultant forces were recorded bilaterally, and asymmetries were quantified using the absolute symmetry index. Foot force was measured with high consistency (coefficient of multiple determination>0.976 ± 0.010). Relative resultant, vertical, and horizontal forces were largest in LWM rowers, whilst average foot forces significantly increased across stroke rates for all three groups of rowers. Asymmetries ranged from 5.3% for average resultant force to 28.9% for timing of peak vertical force. Asymmetries were not sensitive to stroke rate or rowing group, however, large inter-subject variability in asymmetries was evident.  相似文献   

17.
Abstract

This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (<0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.  相似文献   

18.
Abstract

In this study, we evaluated the extent to which 2000-m rowing ergometer performance times predicted final rankings at the World Rowing Championships in a sample of 638 rowers of both sexes and body-mass classifications (i.e. open-category and lightweight rowers). Rowing ergometer performance times were examined using a questionnaire, and in 17 of 23 events they were positively correlated (P ≤ 0.049) with the final rankings at the Championships. The highest correlations were for the ergometer performance times achieved by rowers in lightweight men's single sculls (r = 0.78; P = 0.005), women's single sculls (r = 0.75; P = 0.002), men's single sculls (r = 0.72; P = 0.004), and lightweight men's double sculls (r = 0.72; P < 0.001). We used linear regression to establish regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event in which there was a correlation greater than r = 0.50. Although correlations in 12 events met this criterion, the large standard errors of the estimate hindered ranking predictions in all of the studied events. Regression equations could be used to determine the most probable 2000-m ergometer performance time for a rower to achieve specific rankings at the World Rowing Championships.  相似文献   

19.
The effect of anthropometric differences in shank to thigh length ratio upon timing and magnitude of joint power production during the drive phase of the rowing stroke was investigated in 14 elite male rowers. Rowers were tested on the RowPerfect ergometer which was instrumented at the handle and foot stretcher to measure force generation, and a nine segment inverse dynamics model used to calculate the rower's joint and overall power production. Rowers were divided into two groups according to relative shank thigh ratio. Time to half lumbar power generation was significantly earlier in shorter shank rowers (p = 0.028) compared to longer shank rowers, who showed no lumbar power generation during the same period of the drive phase. Rowers with a relatively shorter shank demonstrated earlier lumbar power generation during the drive phase resulting from restricted rotation of the pelvic segment requiring increased lumbar extension in these rowers. Earlier lumbar power generation and extension did not appear to directly affect performance measures of the short shank group, and so can be attributed to a technical adaptation developed to maximise rowing performance.  相似文献   

20.
The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s?1 · mg?1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号