首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of maximal power output in well-trained cyclists
Authors:Thomas A Wackwitz  Clare L Minahan  Trish King  Chantelle Du Plessis  Mark H Andrews  Phillip M Bellinger
Institution:1. Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University , Gold Coast, Australia;2. Performance Science Unit, Queensland Academy of Sport , Nathan, Australia thomas.wackwitz@griffithuni.edu.au;4. Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University , Gold Coast, Australia;5. Performance Science Unit, Queensland Academy of Sport , Nathan, Australia ORCID Iconhttps://orcid.org/0000-0003-2700-3140;6. Performance Science Unit, Queensland Academy of Sport , Nathan, Australia
Abstract:ABSTRACT

This study aimed to compare mechanical variables derived from torque-cadence and power-cadence profiles established from different cycle ergometer modes (isoinertial and isokinetic) and modelling procedures (second- and third-order polynomials), whilst employing a novel method to validate the theoretical maximal power output (Pmax). Nineteen well-trained cyclists (n = 12 males) completed two experimental sessions comprising six, 6-s maximal isoinertial or isokinetic cycling sprints. Maximal pedal strokes were extracted to construct power–cadence relationships using second- and third-order polynomials. A 6-s sprint at the optimal cadence (Fopt) or optimal resistance (Topt) was performed to assess construct validity of Pmax. No differences were found in the mechanical parameters when derived from isokinetic (Pmax = 1311 ± 415, Fopt = 118 ± 12) or isoinertial modes (Pmax = 1320 ± 421, Fopt = 116 ± 19). However, R2 improved (P < 0.02) when derived from isoinertial sprints. Third-order polynomial modelling improved goodness of fit values (Standard Error, adjusted R2), but derived similar mechanical parameters. Finally, peak power output during the optimised sprint did not significantly differ from the theoretical Pmax in both cycling modes, thus providing construct validity. The most accurate P-C profile can be derived from isoinertial cycling sprints, modelled using third-order polynomial equations.
Keywords:Isokinetic  isoinertial  power-cadence  ergometer mode  modelling procedures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号