首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在△ABC中,∠A,∠B,∠C的对边BC=a,CA=b,AB=c,试证明2bcos(C)/(2) 2ccos(B)/(2)>a b c. <中学数学月刊>2003年第11期40页,通过构造几何图形,给出了一种证明,其实本题用放缩法便得一种更简捷的证明.  相似文献   

2.
题1在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,AD为BC边上的高,且AD=BC,求b/c+b/c的最大值.解法1由AD=BC,可得S△ABC=1/2a2=1/2bcsinA,从而得a2/bc=sinA①  相似文献   

3.
错在哪里     
题 在△ABC中 ,∠A =80° ,a2 =b(b +c) ,求∠B。解 在△ABC中 ,cosB =a2 +c2 -b22ac =c2 +bc2ac =c +b2a ,所以b +c=2acosB ,故a2 =b(b+c) =b·2acosB ,a =2bcosB ,即sinA =2sinB·cosB =sin2B。考虑到∠A的值及 2∠B的范围 ,可得 :∠A =2∠B或∠A +2∠B =1 80°,故∠B =40°或∠B =5 0°。解答错了 !错在哪里 ?我们检验一下 ,当∠B =5 0°时 ,∠C =5 0° ,可得b =c。故a2 =b(b +c) =b2 +c2 ,此三角形应为直角三角形 ,且∠A应等于 90°,与已知条件矛盾。问题出在哪里呢 ?实际上由b +c =2acosB到a =2bcosB为同一条件叠代 ,是…  相似文献   

4.
<正>高考题目不少都是来源于课本的,回归教材是高考复习中要注意的一个问题.下面以"射影定理"为例,说明高考中试题"源自课本,而又高于课本".人教A版必修5第18页练习3在△ABC中,求证:a=bcos C+ccos B,b=ccos A+acos C,c=acos B+bcos A.证明一(教师用书)右边=bcos C+ccos B=  相似文献   

5.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

6.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

7.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

8.
题在△ABC中,∠A=2∠B,a、b、c为∠A、∠B、∠C的对边边长,求证:a2=b2+bc. 证明此题通常用“作线段b+c,构造相似三角形”或“综合运用角平分线、合比、相似等性质”来证.笔者对此题作了较为深入的探讨,发现了许多新颖、巧妙的证法,现将较为典型的10个证法介绍给读者. 1、用相交弦定理  相似文献   

9.
经过研究,笔者现已得到:定理如果直角三角形的一个锐角平分线长与对边的比为2∶3,那么这个锐角为60°.已知:如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,且BD∶AC=2∶3,求证:∠ABC=60°.证明:设∠DBC=θ,BD=2a,由BD∶AC=2∶3,知AC=3a.在Rt△DBC中,∠C=90°,所以CD=2asinθ,BC=2acosθ,所以AD=(3-2sinθ)a.过点D作DE⊥AB于点E.  相似文献   

10.
在平面几何中经常会碰到型如“1/a+1/b=1/c”的证明问题。现以全日制十年学校初中数学课本《几何》第一册(以下简称:课本)中出现的问题对其证法进行探讨: [问题]:在△ABC的一边AB上任取一点C′,过A、B作CC′的平行线分别交BC、AC的延长线于A′、B′,求证:1/(AA′)+1/(BB′)=1/(CC′)。证:(如图1)  相似文献   

11.
这是△ABC中较为常见的一个不等式,证法较多,本文给出它的平几证法: 如图,在△ABC中,设BC=a,AC=b,AB=c,作∠BAC的干分线AF,则∠CAF=∠BAF=譬,过B,C两点作AF的垂线,交AF和AF的延长线于D,E两点,(当且仅当b=c时等式成立).  相似文献   

12.
在△ABC中,设BC=a,CA=b,AB=c,ωa,ωb,ωc和ma,mb,mc分别为∠A,∠B,∠C的角平分线和中线,R,r分别为△ABC的外接圆和内切圆半径.  相似文献   

13.
定理 在△ABC中 ,∠A =n∠B ,a、b、c分别为∠A、∠B、∠C的对边 ,a、b、c的关系记为 fn=fn(a ,b,c) =0 ,则有 (记N =14( 2n + ( -1 ) n +1+ 1 )fn=∑nk =1( -1 ) k- 1C2k - 1n b[4a2 c2 -(a2 -b2 +c2 ) 2 ]k - 1(a2 +c2 -b2 ) n- 2k+1-a( 2ac) n - 1.证明 :由 (cosB +isinB ) n =∑nk=0 Ckncosn -kB·(isinB) k=cosnB +isinnB ,得 sinnB =∑Nk=1C2k- 1n ( -1 ) k- 1sin2k- 1B ·cosn - 2k+1B .①又由sinAsinB=sinnBsinB =ab ,sinnB =absinB ,代入①即得∑Nk=1( -1 ) k - 1C2k- 1n sin2k- 2 B·cosn - 2k+1B -a =0 .②由余…  相似文献   

14.
一、忽视直角三角形致错例1 在△ABC中,∠A,∠B,∠C的对边为a,b,c,且a:b:c=3:4:5,求证:sinA+sinB=7/5。错解:证明:设a=3k,b=4k,c=5k,则分析本题中没有说明∠C=90°,而直接应用正弦、余弦函数的定义错误的,应先证明△ABC为直角三角形,且∠C=90°后才能用事定义。  相似文献   

15.
三角形的角平分线在初中几何中占有重要的地位,其应用也十分广泛,为使同学们更好地掌握它,现作如下归纳. 一、角平分线+平行→等腰三角形例1 如图1,△ABC中,BE平分∠ABC,DE∥BC,求证:BD=DE 深化探究:如图2,若△ABC中,∠ABC、∠ACB的平分线交于O点,过O作DE∥BC.  相似文献   

16.
一、填空题1.如图1,若a∥b,∠1=72°,则∠2=.图1图22.如图2,若AB∥CD,∠ABE=110°,∠DCE=35°,则∠BEC=.3.如图3,∠1+∠2+∠3+∠4=.图3图44.如图4,A,O,B在同一直线上,∠AOC=12∠BOC+30°,OE平分∠BOC,则∠BOE=.5.如图5,直线AB,CD交于点O,OE是∠AOD的平分线,∠AOC=50°,则∠DOE的度数是.图5图6186.已知等腰三角形的两边长分别为6cm,3cm,则该等腰三角形的周长是cm.7.如图6,△ABC中,∠B=60°,∠C=40°,AD⊥BC,AE为∠BAC的平分线.则∠DAE的度数是.8.已知,如图7,把一张长方形纸片ABCD沿BD对折,使C点落在E处,BE与AD…  相似文献   

17.
性质 若直角三角形的直角边的长为a和b,斜边长为c,则a+b≤在c(当且仅当a=b时等号成立). 证法1 如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,延长CB至D,使BD=AC=b,作ED⊥DC于点D,使ED=BC=a,  相似文献   

18.
如图1,∠ABC是任意的一个角,α是任意的一个平面,作AA′⊥α于A′,BB′⊥α于B′,CC′⊥α于C′,把∠A′B′C′叫做  相似文献   

19.
一道三角问题解答的思考   总被引:1,自引:0,他引:1  
近日笔者在一本资料上遇到这样一道三角问题: 在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,AD为BC边上的高,且AD=BC,试求b/c+c/b的最大值.  相似文献   

20.
文[1]给出如下结论:在△ABC中,设I是它的内心,a,b,c分别是∠A,∠B,∠C的对边,R是△ABC的外接圆半径,则有AI BI CI≤ab bc ca.(1)1AI 1BI 1CI≥3R.(2)bcAI caBI abCI≥33.(3)本文给出两个更一般的结论:定理 在△ABC中,设I是它的内心,a,b,c分别是∠A,∠B,∠C的对边,对于正数x,y,z有xAI yBI zCI≤abx2 bcy2 caz2.(4)xAI yBI zCI≥333xyzabc.(5)证明 设s,R,r分别是△ABC的半周长、外接圆半径、内切圆半径.易知:AI=rsinA2=2rcosA2sinA=4RrcosA2a,同理 BI=4RrcosB2b,CI=4RrcosC2c.所以 xAI yBI zCI=4Rrabc(xbcc…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号