首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
命题:过抛物线y~2=2px的焦点的一条直线和这抛物线相交.两个交点的纵坐标为主y_1、y_2.则y_1·y_2=-p~2.这是目前使用的各种解析几何课本中几乎都有的一道题目.因为它反映了抛物线焦点弦的重要属性.但在一般资料论及这个命题中却较少去揭示这个命题的内涵,只是应  相似文献   

2.
运用题组进行教学,可以把有关知识综合串联起来,有助于开拓学生的思路,培养综合运用的能力。本文介绍“圆锥曲线”中的两个题组。 (一)抛物线的焦点弦有着广泛的应用,围绕着焦点弦、切线、准线等可以组成很多题目。为了帮助学生理清头绪,我们首先复习统编教材上证过的两个题:(1)已知经过抛物线y~2=2px上两点P_1(x_1,y_1)和P_2(x_2,y_2)的两条切线相交于点M(x_0,y_0)。求证x_0=(y_1y_2)/(2p),y_0=(y_1 y_2)/2。(解几课本第120页第6题)(2)过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2。求证y_1y_2=-p~2。(解几课本第111页第8题)在学生掌握了这两题的证法和结论  相似文献   

3.
高中《平面解析几何》第99页有这样一道题: 题 过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2,求证:y_1y_2=-p~2。 教学参考书(人民教育出版社)上的解答如下: 设过焦点的直线为y=k(x-p/2)(k≠0),即  相似文献   

4.
充分利用教材,发挥教材中习题的作用,挖掘习题的潜能,是数学教学的一个主要环节.我在上抛物线的习题课时,以课本习题八的第8题“过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2,求证y_1y_2=-p~2.”为导火线,点燃学生发散思维的火花.在教学方法上进行了优化组合,取得了良好的教学效果.下面是我的教学程式:一、命题的证明采用讨论式教法,一题多证培养求异思维.我让学生认真审题,互相讨论.互相启发,互相交流,争论答辩,集思广益,得到四种不同的证法:证法1设焦点弦两端点分别为证法2设过焦点…  相似文献   

5.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

6.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

7.
每期一题     
己知抛物线y~2=2px的一条焦点弦被焦点分成长为m,n的两部分求证:1/m 1/n=2/p 如图设A(x_1,y_1),B(x_2,y_2),m=|FA|,n=|FB|,F(1/2p,0),准线方程x 1/2p=0。  相似文献   

8.
定理:设抛物线方程y~2=2px,若过抛物线焦点F(p/2,0),且倾斜角为α(α≠0)的直线,交抛物线于M(x_1,y_1)、N(x_2,y_2),则M、N点的坐标存在如下关系:x_1·x_2=p~2/4 ①y_1·y_2=-P~2 ②证明:过焦点F(p/2,0)且倾斜角为α的直线方程为:  相似文献   

9.
近几年高考试题,直接源于课本原型的约占一半,一些较难的试题,也是在教材基础上,加工而成。充分发挥教材中习题的功能,使得通过练习能起到举一反三的作用,非常重要。兹从多解多变方面,举一例说明。现行平面解析几何教材习题八中有这样一题:过抛物线y~2=2px的焦点的一条直线和这抛物线相交的两交点的纵坐标为y_1、y_2,求证:y_1y_2=-p~2。这是一道基本题。利用它的多种解法,可以激发学生学习兴趣,发展联想能力,使学生  相似文献   

10.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

11.
人教版高中数学第二册(上)第119页有这样一道题: 过抛物线y~2=2px的焦点的一条直线和此抛物线相交,两个交点的纵坐标分别为y1,y2,求证:y1·y2=-p~2. 现对这个问题进行推广,得到抛物线的一条新性质.  相似文献   

12.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

13.
圆的切点弦问题蕴涵着圆的许多别具一格的几何性质,同样地,抛物线的切点弦问题的性质也很精彩.近几年来,以抛物线的切点弦性质为背景的高考试题频频亮相,以其独特的魅力,尽显风骚.本文对抛物线的切点弦问题的性质做简单的归纳与思考.1 定值问题性质1 过抛物线的准线与对称轴的交点作抛物线的两条切线,则切点弦长等于该抛物线的通径.证明:设抛物线 y~2=2px(p>0),则其准线与对称轴的交点为(-(p/2),0),设切点 A(x_0,y_0),则切线方  相似文献   

14.
冯寅 《数学教学》2002,(4):10-11,28
宗旨:利用一张直线过抛物线焦点的图形,使学生自己寻找、自己发现、自己解决问题. 过程:在课前请学生根据这张图形,自己给出几个命题,并加以解决. 素材:过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点分别为A(x_1,y_1)和B(x_2,y_2). 序言:图1是我们在学习抛物线时经常看到的一张图.在这张图中包含了与抛物线有关  相似文献   

15.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

16.
现高中教材《平面解析几何》(甲种本)第116页例3求证:椭圆x~2/25+y~2/9=1和双曲线x~2-15y~2=15在交点的切线互相垂直。书上证明方法是求四个交点坐标,再求交点处切线的斜率,验证两者成负倒数关系。实际上,本题可作一般性证明,即不必求出交点坐标。证明如下。设椭圆与双曲线的交点坐标为(x_0,y_0),则过(x_0,y_0)椭圆的切线为 x_0x/25+y_0y/9=1,即 9x_0x+25y_0y=225;双曲线的切线为x_0x-15y_0y=15,两切线的斜率分别为:  相似文献   

17.
复习课教学中,对课本习题进行再探讨,是培养学生基本数学思想和方法的重要途径。近年来高考试题源于教材,有的是取教材中的原题或仿制类似题。为此复习课应紧扣教材,有的放矢,力争做到“以不变应万变”。实践证明,复习课教学从课本例习题出发,可前后串联综合,乃至适当的拓广、延伸等,可使学生对所讲问题既有熟悉感又有新奇感,在兴趣盎然中巩固旧知识,获取新知识,提高解题能力和思维能力,真乃是一举多得。下面以我的复习课教案一例,以抛砖引玉。 解析几何课本第99页习题第8题:过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两交点的纵坐标分别为y_1,y_2,求证:y_1·y_2=-p~2 .下面我从两个方面对此题作些探讨。  相似文献   

18.
习题“抛物线y~2=2px的焦点的一条直线和这抛物物线相交,两个交点的纵坐标为y_1,y_2,求证:y_1y_2=-p~2”,教材上使用的是常规证法,但就教学的本意而言,应该“发展思维,培养能力”,不仅要传授知识,更重要的是培养学生的思维能力,发展学生的智力。因此,一定要注重思维方式,如何让学生从多渠道理解和认识知识,从思维方式的转换去掌握方法,形成技能。在逐步的思维迁移过程中培养学生发现新知识和新方法的能力,则是时代赋于数学教学的使命。如果一个特定的问题可以被转化为一个图形,那么,思想就整体地把握了问题,并且能创造性地思索问题的解法。如果运用逆向思维去思考,从要证的结论y_1·y_2=-p~2出发,把y_1和y_2在图形上表示出来,由于直观是创造活动和几何学之间的连杆,思维想象则是另一重要连杆,则思维可多方面的联想、它带有飞  相似文献   

19.
在解析几何的复习中,我们遇到了这样一道题;已知抛物线 y~2=2px(p>0)上有两点 A、B 关于点 M(2,2)对称.(1)求 p 的取值范围;(2)当 p=2时,该抛物线上是否存在另外两点 C、D,且A、B、C、D 四点共圆?若存在,求出此圆方程;若不存在,请说明理由.对于第一问,同学们都能做出来,即设 A(x_1,y_1)、B(x_2,y_2)是抛物线上关于点 M(2,2)对称的两点,则 x_1 x_2=4,y_1  相似文献   

20.
本文利用焦半径推导出经过圆锥益线焦点的直线被圆锥曲线截得的线段长度的一种表达形式。供教学参考.推论及证明推论经过椭圆b~2x~2 a~2y~2=a~2b~2(a>b>0),双曲线 b~2x~2-a~2y~2=a~2b~2(a>0,b>0),抛物线 y~2=2px(p>0)焦点 F 的直线与它们相交于 A、B 两点,若A、B 两点的横坐标为 x_1,x_2,则|AB|_(椭圆)=2a-e|x_1 x_2|(1)|AB|_(双曲线|=x_1 x_2|±2a(2)|AB|_(抛物线)=x_1 x_2 p(3)对于双曲线的说明:当 A、B 在同支上时取“-”,异  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号