首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正我们知道,抛物线y=ax~2+bx+c是轴对称图形,它的对称轴为x=b/(2a)。抛物线的轴对称性是二次函数的一个重要特征,即若抛物线上有两个对称点的坐标为(x_1,y_1)、(x_2,y_2)则一定有y_1=y_2,且其对称轴为x=(x_1+x_2)/2。当抛物线开口方向向上,抛物线上的点距离对称轴越远,所对应的点的纵坐  相似文献   

2.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

3.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

4.
抛物线y=ax~2+bx+c(a≠0)是轴对称图形.在应用对称性时应注意三点: 1.对称轴是直线x=b/(2a); 2.顶点在对称轴上; 3.设抛物线与x轴的交点为(x_1,0)和(x_2,0),由对称性知,  相似文献   

5.
六年制重点中学高中数学课本《解析几何》P.111的第8题:“过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1,y_2求证:y_1y_2=-p~2”。若设两个交点的横坐标为x_1,x_2,由y_1y_2=-p~2,易知x_1x_2=p~2/4,这就是说“抛物线焦点弦(经过焦点,并且两个端点在抛物线上的线段)的两个端点的横坐标之积是常数,纵坐标之积也是常数”。此结论很重要,它反映了抛物线焦点弦的一个重要性质。解题时,为了减少引进参数,若设抛物线y~2=  相似文献   

6.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

7.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

8.
杨宝善 《初中生》2011,(36):27-29
我们知道,抛物线y=ax2+bx+c(a≠0)是轴对称图形,其对称轴是x=-b2a.利用抛物线的对称性,能得到以下性质:性质1:抛物线上关于对称轴对称的两点的纵坐标相等,反过来,抛物线上纵坐标相等的两点关于对称轴对称.特别地,如果抛  相似文献   

9.
若点(x1,y0),(x2,y0)在抛物线上,则抛物线的对称轴为直线x=x12 x2.巧妙运用抛物线的这一性质,可简捷快速地解答一类试题.一、求点的坐标例1如图1,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(3,0),则点A的坐标是.(2005年宁厦)分析与简解显然点A、B关于直线x=1对称,设点A的坐标为(x1,0),则x12 3=1,从而x1=2-3,故点A的坐标为(2-3,0).例2抛物线y=ax2 bx c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点坐标是.(2005年山东)分析与简解由点A(-2,7),B(6,7)的纵坐标相同,知A、B关于抛物线的对称轴x=-2 62=2对称.故设…  相似文献   

10.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

11.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

12.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

13.
定理:设抛物线方程y~2=2px,若过抛物线焦点F(p/2,0),且倾斜角为α(α≠0)的直线,交抛物线于M(x_1,y_1)、N(x_2,y_2),则M、N点的坐标存在如下关系:x_1·x_2=p~2/4 ①y_1·y_2=-P~2 ②证明:过焦点F(p/2,0)且倾斜角为α的直线方程为:  相似文献   

14.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

15.
运用题组进行教学,可以把有关知识综合串联起来,有助于开拓学生的思路,培养综合运用的能力。本文介绍“圆锥曲线”中的两个题组。 (一)抛物线的焦点弦有着广泛的应用,围绕着焦点弦、切线、准线等可以组成很多题目。为了帮助学生理清头绪,我们首先复习统编教材上证过的两个题:(1)已知经过抛物线y~2=2px上两点P_1(x_1,y_1)和P_2(x_2,y_2)的两条切线相交于点M(x_0,y_0)。求证x_0=(y_1y_2)/(2p),y_0=(y_1 y_2)/2。(解几课本第120页第6题)(2)过抛物线y~2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y_1、y_2。求证y_1y_2=-p~2。(解几课本第111页第8题)在学生掌握了这两题的证法和结论  相似文献   

16.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

17.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

18.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

19.
例1 求点 P(4,0)与抛物线 y~2=2x 上的点的距离的最小值。解:设抛物线上一点 Q(x_1,y_1),则y_1~2=2x_1,|PQ|=(x_1-4)~2~(1/2) y_1~2=(x_1~2-6x_1 16)~(1/2)。∵被开方数二次项的系数为正,∴当 x=3时,(x_1~2-6x_1 16)极小值:=7,|PQ|极小值=7~(1/2)。例2 设 A、B 是椭圆 x~2/a~2 y~2/b~2=1的相邻二顶点,试在(?)上求一点 P,使四边形PAOB 面积为最大。解:设(?)上一点 P(acosθ,bsinθ),则S(?)PAOB=S△AOB S△PAB  相似文献   

20.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号