首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

2.
Two groups of 8-year-old males were studied. One group (good runners) consisted of subjects who placed above the median on 5-, 7-, and 9-minute runs; a second group (poor runners) represented children who placed below the median on the same three runs. The aerobic responses of these subjects were determined for submaximal treadmill running at speeds of 134, 154, and 174m· min–1. Maximal aerobic power and maximal running speed were also measured. At common submaximal speeds the good runners used smaller proportions of both their maximal running speed and their maximal aerobic power. Estimations of the aerobic demands of a 9-minute run suggest that in 8-year-old males better distance runners (a) possess a faster maximal sprint speed, yet perform distance runs at higher percentage of their maximal speed; (b) require more O2 to sustain this pace; and (c) perform at a higher percentage of their maximal aerobic power than do distance runners of poorer ability.  相似文献   

3.
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s?1 ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.  相似文献   

4.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

5.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

6.
The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.  相似文献   

7.
ABSTRACT

As the effect of performance level on sprinting mechanics has not been fully studied, we examined mechanical differences at maximal running speed (MRS) over a straight-line 35 m sprint amongst sprinters of different performance levels. Fifty male track and field sprinters, divided in Slow, Medium and Fast groups (MRS: 7.67 ± 0.27 m?s?1, 8.44 ± 0.22 m?s?1, and 9.37 ± 0.41 m?s?1, respectively) were tested. A high-speed camera (250 Hz) recorded a full stride in the sagittal plane at 30–35 m. MRS was higher (p < 0.05) in Fast vs. Medium (+11.0%) and Slow (+22.1%) as well as in Medium vs. Slow (+10.0%). Twelve, eight and seven out of 21 variables significantly distinguished Fast from Slow, Fast from Medium and Medium from Slow sprinters, respectively. Propulsive phase was signi?cantly shorter in Fast vs. Medium (?17.5%) and Slow (?29.4%) as well as in Medium vs. Slow (?14.4%). Fast sprinters had significantly higher vertical and leg stiffness values than Medium (+44.1% and +18.1%, respectively) and Slow (+25.4% and +22.0%, respectively). MRS at 30–35 m increased with performance level during a 35-m sprint and was achieved through shorter contact time, longer step length, faster step rate, and higher vertical and leg stiffness.  相似文献   

8.
Successful recruiting for collegiate track & field athletes has become a more competitive and essential component of coaching. This study aims to determine the relationship between race performances of distance runners at the United States high school and National Collegiate Athletic Association (NCAA) levels. Conditional inference classification tree models were built and analysed to predict the probability that runners would qualify for the NCAA Division I National Cross Country Meet and/or the East or West NCAA Division I Outdoor Track & Field Preliminary Round based on their high school race times in the 800 m, 1600 m, and 3200 m. Prediction accuracies of the classification trees ranged from 60.0 to 76.6 percent. The models produced the most reliable estimates for predicting qualifiers in cross country, the 1500 m, and the 800 m for females and cross country, the 5000 m, and the 800 m for males. NCAA track & field coaches can use the results from this study as a guideline for recruiting decisions. Additionally, future studies can apply the methodological foundations of this research to predicting race performances set at different metrics, such as national meets in other countries or Olympic qualifications, from previous race data.  相似文献   

9.
Comparison of maximal anaerobic running tests on a treadmill and track   总被引:1,自引:0,他引:1  
To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol x l-1 (v10 mM) and 5 mmol x l(-1) (v5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 +/- 0.79 m x s(-1)) than on the treadmill (7.13 +/- 0.75 m x s(-1)), and sprint runners had significantly higher vmax, v10 mM, and peak blood lactate concentration than distance runners (P < 0.05). The Pearson product--moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v10 mM), 0.70 (v5 mM), and 0.78 (peak blood lactate concentration) (P < 0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with vmax in the treadmill (r = 0.90, P < 0.001) and track protocols (r = 0.92, P < 0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and vmax in the treadmill (r = 0.70, P < 0.01) and track protocols (r = 0.63, P < 0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

10.
Abstract

The aim of this study was to test the hypothesis that sprint performance (time over a given distance) would be affected by track compliance, with better performances on the more compliant surface. Ten sprinters participated in the study. The athletes performed maximal sprints (60 m) on three different track configurations (hard, 5500 kN · m?1; soft, 2200 kN · m?1; spring, 550 kN · m?1). A 60-m single-lane running surface was constructed. Plywood boards (1.2 cm thick) were placed on a 60 × 0.6 m wooden chipboard frame serving as the base surface. All participants ran two times on each track configuration in a randomized order. The athletes' kinematics were recorded using the Vicon 624 system with 12 cameras operating at 250 Hz. Four Kistler force plates (1250 Hz) were used to record ground reaction forces. Sprint performance (time over 60 m) was unaffected by the different track compliances (P = 0.57). In addition, there was no effect of track (P > 0.05) on the sprinting kinematics and kinetics of the ankle or knee joint. The hypothesis that sprint performance is affected by track compliance can be rejected because the sprinters recorded similar performances while sprinting over 60 m on all three track configurations. We conclude that: (1) the possible deformation of the track while sprinting is minor enough not to cause a specific adjustment in the leg mechanics affecting the effectiveness of the stretch – shortening cycle of the sprinters; and (2) the energy exchange between sprinters and tracks has only a marginal effect on sprint performance due to its small magnitude. More research on tracks with lower stiffness is required.  相似文献   

11.
Abstract

This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s-1. Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s-1). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s-1. Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.  相似文献   

12.
To investigate the benefits of ‘living high and training low' on anaerobic performance at sea level, eight 400-m runners lived for 10 days in normobaric hypoxia in an altitude house (oxygen content = 15.8%) and trained outdoors in ambient normoxia at sea level. A maximal anaerobic running test and 400-m race were performed before and within 1 week of living in the altitude house to determine the maximum speed and the speeds at different submaximal blood lactate concentrations (3, 5, 7, 10 and 13 mmol· l-1) and 400-m race time. At the same time, ten 400-m runners lived and trained at sea level and were subjected to identical test procedures. Multivariate analysis of variance indicated that the altitude house group but not the sea-level group improved their 400-m race time during the experimental period (P ? 0.05). The speeds at blood lactate concentrations of 5–13 mmol· l-1 tended to increase in the altitude house group but the response was significant only at 5 and 7 mmol·l-1 (P ? 0.05). Furthermore, resting blood pH was increased in six of the eight altitude house athletes from 0.003 to 0.067 pH unit (P ? 0.05). The results of this study demonstrate improved 400-m performance after 10 days of living in normobaric hypoxia and training at sea level. Furthermore, the present study provides evidence that changes in the acid–base balance and lactate metabolism might be responsible for the improvement in sprint performance.  相似文献   

13.
To investigate the benefits of 'living high and training low' on anaerobic performance at sea level, eight 400-m runners lived for 10 days in normobaric hypoxia in an altitude house (oxygen content = 15.8%) and trained outdoors in ambient normoxia at sea level. A maximal anaerobic running test and 400-m race were performed before and within 1 week of living in the altitude house to determine the maximum speed and the speeds at different submaximal blood lactate concentrations (3, 5, 7, 10 and 13 mmol x l(-1)) and 400-m race time. At the same time, ten 400-m runners lived and trained at sea level and were subjected to identical test procedures. Multivariate analysis of variance indicated that the altitude house group but not the sea-level group improved their 400-m race time during the experimental period (P < 0.05). The speeds at blood lactate concentrations of 5-13 mmol x l(-1) tended to increase in the altitude house group but the response was significant only at 5 and 7 mmol x l(-1) (P < 0.05). Furthermore, resting blood pH was increased in six of the eight altitude house athletes from 0.003 to 0.067 pH unit (P < 0.05). The results of this study demonstrate improved 400-m performance after 10 days of living in normobaric hypoxia and training at sea level. Furthermore, the present study provides evidence that changes in the acid-base balance and lactate metabolism might be responsible for the improvement in sprint performance.  相似文献   

14.
This study analysed the acute mechanical and metabolic responses to a sprint training session focused on maintaining maximal speed until a given speed loss was reached. Nine male high-level sprinters performed 60 m running sprints up to a 3% in speed loss with 6 min rests between sets. Mechanical responses (countermovement jump (CMJ) height and speed loss) and metabolic responses (blood lactate and ammonia concentrations) were measured pre-exercise and after each set was performed. Jump height loss showed almost perfect relationships with both lactate (r = 0.91) and ammonia (r = 0.91) concentrations. In addition, nearly perfect relationships were observed for each athlete between CMJ height loss and lactate (r = 0.93–0.99) and ammonia (r = 0.94–0.99). Very large correlations were found between speed loss and lactate (r = 0.83), and ammonia (r = 0.86) concentrations. Furthermore, close relationships were observed for each athlete between speed loss and lactate (r = 0.86–0.99), and ammonia (r = 0.88–0.98). These results suggest that the CMJ test may allow more accurate setting of training loads in sprint training sessions, by using an individualised sprint dose based on mechanical and physiological responses rather than a standard fixed number of sprints for all athletes.  相似文献   

15.
The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion–inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m?2) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar’s test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (< 0.001). Speed was related to vertical foot rotation type for shod (< 0.01) and unshod conditions (< 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (< 0.001) and competitive running speeds (< 0.01). No significant difference was found in inversion or eversion (≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.  相似文献   

16.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

17.
The aims of this study were to determine (1) whether running speed is directly proportional to heart rate (HR) during field testing and during 10‐ and 21‐km races, and (2) whether running intensity, as estimated from HR measurements, differs in 10‐ and 21‐km races and between slow and fast runners at those running distances. Male runners were divided into a fast (65–80 min for 21 km; n = 8) or slow (85–110 min for 21 km; n = 8) group. They then competed in 10‐ and 21‐km races while wearing HR monitors. All subjects also ran in a field test in which HR was measured while they ran at predetermined speeds. The 10‐km time was significantly less in the fast compared with the slow group (33:15 ± 1:42 vs 40:07 ± 3:01 min:s; x ± s.d.), as was 21‐km time (74:19 ± 4:30 vs 94:13 ± 9:54 min:s) (P < 0.01). Despite the differences in running speed, the average running intensity (%HRmax) for the fast and slow groups in the 10‐km race was 90 ± 1 vs 89 ± 3% and in the 21‐km race 91 ± 1 vs 89 ± 2%, respectively. In addition, %HRmax was consistently lower in the field test at the comparative average running speeds sustained in the 10‐km (P < 0.01) and 21‐km (P < 0.001) races. Hence, factors in addition to work rate or running speed influence the HR response during competitive racing. This finding must be considered when running intensity for competitive events is prescribed on the basis of field testing performed under non‐competitive conditions in fast and slow runners.  相似文献   

18.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

19.
ABSTRACT

Hill running is often used as a foundational training mechanism to build strength and speed. Distance runners in particular are at an increased likelihood of encountering steep hills during training runs. There is limited research regarding downhill running, and there is no research available on the biomechanics of females specifically during downhill running. The purpose of this study was to quantify the differences in loading when running downhill at different grades compared to a level surface in female distance runners to determine the potential risk for injury. Fifteen female distance runners (age: 23.5 ± 4.9 y), who ran 56.3 ± 20.9 km a week participated in this study. Participants ran on a force-instrumented treadmill at 4.0 m/s for 2 min at 0%, ?5%, ?10%, ?15%, and ?20% grades, with 5 min of rest between conditions. Study findings showed increased impact forces (< 0.001), and increased loading rates (< 0.001) with increasing downhill grades compared to level. These results indicate a significantly greater risk of overuse injury to the lower extremity with steeper downhill grades. Individuals need to be aware of these risks to plan and implement training programmes that will increase performance while minimising injury risk.  相似文献   

20.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号