首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The objective of this study was to provide anthropometric, physiological, and performance characteristics of an elite international handball team. Twenty-one elite handball players were tested and categorized according to their playing positions (goalkeepers, backs, pivots, and wings). Testing consisted of anthropometric and physiological measures of height, body mass, percentage body fat and endurance ([Vdot]O2max), performance measures of speed (5, 10, and 30 m), strength (bench press and squat), unilateral and bilateral horizontal jumping ability, and a 5-jump horizontal test. Significant differences were found between player positions for some anthropometric characteristics (height and percentage body fat) but not for the physiological or performance characteristics. Strong correlations were noted between single leg horizontal jumping distances with 5-, 10-, and 30-m sprint times (r = 0.51–0.80; P < 0.01). The best predictors of sprint times were single leg horizontal jumping with the dominant leg and the distance measured for the 5-jump test, which when combined accounted for 72% of the common variance associated with sprint ability. In conclusion, performance abilities between positions in elite team-handball players appear to be very similar. Single leg horizontal jumping distance could be a specific standardized test for predicting sprinting ability in elite handball players.  相似文献   

2.
Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women’s basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (= .004) and excursions (= .003) compared to the basketball control group (= .01) and soccer intervention group (= .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (= .01), but not the soccer intervention group (= .11). Although women’s soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.  相似文献   

3.
The purpose of this study was to assess the within- and between-session reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks performed by elite female handball and football (soccer) athletes. Moreover, we aimed at determining the minimum number of trials necessary to obtain a reliable measure. Nineteen elite female handball and 22 elite female football (soccer) athletes (M ± SD: 22 ± 4 yrs old, 168 ± 5 cm, 66 ± 8 kg) were tested. The reliability was quantified by intra-class correlations (ICCs), typical error and Spearman’s rank correlation. Only minor improvements in ICC values were seen when increasing the number of trials from 3 to 5. Based on trials 1–3, all variables showed good to excellent within-session reliability (M ICC: 0.91, 95% CI: 0.89–0.93), fair to good between-session reliability (M ICC: 0.73, 95% CI: 0.70–0.76), moderately positive between-session rank correlation coefficients (M: 0.72, 95% CI: 0.69–0.76). A few frontal plane biomechanical variables displayed lower between-session reliability in the football task compared with the handball task. The moderately positive between-session ranking and practically small typical error implies that the measurements could reliably reproduce the ranking of individuals in multiple-session studies. Adequate reliability could be attained from 3 trials, with only minor improvements when adding more trials.  相似文献   

4.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

5.
In order to maximise the potential for success, developing nations need to produce superior systems to identify and develop talent, which requires comprehensive and up-to-date values on elite players. This study examined the anthropometric and physical characteristics of youth female team handball players (16.07 ± 1.30 years) in non-elite (= 47), elite (= 37) and top-elite players (= 29). Anthropometric profiling included sum of eight skinfolds, body mass, stature, girths, breadths and somatotype. Performance tests included 20 m sprint, counter-movement jump, throwing velocity, repeated shuttle sprint and jump ability test, and Yo-Yo Intermittent Recovery Test Level 1. Youth top-elite players had greater body mass, lean mass, stature, limb girths and breadths than elite and non-elite players, while only stature and flexed arm were higher in elite compared to non-elite players (all P < 0.05). Sum of skinfolds and waist-to-hip ratio were similar between groups (> 0.05). Top-elite performed better in most performance tests compared to both elite and non-elite players (P < 0.05), although maximal and repeated 10 m sprints were similar between playing standards (P > 0.05). Elite outperformed non-elite players only in throwing velocity. The findings reveal that non-elite players compare unfavourably to top-elite international European players in many anthropometric and performance characteristics, and differ in a few characteristics compared to elite European club team players. This study is useful for emerging team handball nations in improving talent identification processes.  相似文献   

6.
The aim of this cross-sectional study was to compare bone mass in young female athletes playing ball games on different types of playing surfaces. About 120 girls, 9–13 years of age (10.6 ± 1.5 years old Tanner I–III) were recruited and divided into prepubertal and pubertal groups. The sample represented 3 groups of athletes: soccer (N = 40), basketball (N = 40), and handball (N = 40); and 6 different playing surfaces (soccer – ground, soccer – artificial turf, basketball – synthetic, basketball – parquet, handball – synthetic, and handball – smooth concrete). Total and regional body composition (bone mass, fat mass, and lean mass) were measured by dual-energy X-ray absorptiometry (DXA). The mechanical properties of the surfaces (force reduction, vertical deformation, and energy return) were measured with the Advanced Artificial Athlete (Triple A) method. The degree of sexual development was determined using Tanner test. The pubertal group showed that soccer players on the ground, basketball players on synthetic, and handball players on smooth concrete had higher values of bone mineral content (BMC) and bone mineral density (BMD) (< 0.05) than the soccer players on the artificial turf, basketball players on parquet, and handball players on synthetic. In conclusion, a hard playing surface, with less vertical deformation and force reduction, and greater energy return, is associated with higher levels of BMD and BMC in growing girls, regardless of the sport they practice.  相似文献   

7.
The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes.  相似文献   

8.
9.
Abstract

Anthropometry and body composition were investigated in 43 female handball players from the Italian championships, grouped according to their competitive level (elite vs. sub-elite) or their playing position [goalkeeper (n = 7), back (n = 14), wing (n = 18), or pivot (n = 4)]. The anthropometry consisted of several circumferences, lengths, widths, and skinfold measurement at six sites; the regional and total body compositions were assessed by means of dual-energy X-ray absorptiometry (DXA). One-way ANOVA was used for statistical analysis, with a Bonferroni post-hoc test where needed. The results showed that elite players have significantly lower percentages of fat and higher bone mineral content than sub-elite as well as a clear tendency to accrue more lean mass, especially in upper limbs. Overall, the physical characteristics and body composition of handball players in Italy compared unfavourably with those in other countries, suggesting a need for improved selection and training. When playing position was included in the analysis of the whole group of handball players (n = 43) significant differences were found between the stature, mass, body mass index (BMI), several skinfolds, circumferences and lengths, and total body mineral mass, lean mass and fat mass of players in different positions. Post-hoc analysis suggests that players on the wing and in goalkeeper positions differed most from one another. These findings confirm and expand on previous data about the presence of anthropometric differences within playing positions in handball.  相似文献   

10.
ABSTRACT

Despite the importance of technique and tactics for athlete performance, there has been surprisingly little research on the value of these skills in talent identification and development. This study investigated the relationship between coaches’ early notational analyses of female youth handball players and the long-term success of these athletes. Participants included sixty-eight female handball players involved in a talent selection camp in Germany when they were between 12 and 14 years of age (mean = 14.42, SD = 0.42). All subsequently ended up as non-, semi- or professional adult players. During the initial selection camp, participants were evaluated on a range of quantitative and qualitative measures of technical and tactical skill. Results indicated significant differences between the groups, but only for the number of actions taken, not for the quality of those actions. While this seems counterintuitive, it may reflect the likelihood that more skilled and/or talented players take more actions. Further work is necessary to explore the validity and implications of these findings.  相似文献   

11.
ABSTRACT

We aimed to determine key biomechanical parameters explaining age-related jumping performance differences in youth elite female soccer players. Multiple biomechanical parameters from countermovement (CMJ) squat (SJ) and drop (DJ) jump testing of elite female soccer players (n = 60) within the same national training centre were analysed across ages 9-11y, 12-14y and 15-19y. Effects of age group and jump type on jump height were found, with the older jumping higher than the younger groups in all jumps (P < 0.05). For DJ, higher reactive strength index was found for older, compared to each younger group (P < 0.001). For CMJ and SJ, peak power was the most decisive characteristic, with significant differences between each group for absolute peak power (P < 0.0001) and body-weight-normalised peak power in CMJ (57 ± 7W/kg, 50 ± 7W/kg, 44.7 ± 5.5W/kg; P < 0.05) and between the older and each younger group in SJ (56.7 ± 7.1W/kg, 48.9 ± 7.1W/kg, 44.6 ± 6W/kg; P < 0.01). Age-related differences in jumping performance in youth elite female soccer players appear to be due to power production during standing jumps and by the ability to jump with shorter ground contact times during reactive jumps.  相似文献   

12.
Abstract

Longitudinal research provides valuable information about change and progress towards elite performance. Unfortunately, there is a lack of longitudinal research in handball. In this study, 94 youth handball players (oldest group: n = 41; age 15–17 and youngest group: n = 53; age 13–15) were followed over a three-year period. Repeated Measures ANCOVA was conducted to reveal longitudinal changes in anthropometry and physical performance between elite and non-elite players, controlling for maturation. Maturation effects were found for anthropometry (P < 0.01) and some physical performance measures in strength and speed (P < 0.05). The lack of significant interaction effects revealed that during the three years of the study the elite players did not improve their physical performance more rapidly than the non-elites. Furthermore, they had a similar anthropometric profile to the non-elites. Elite players performed better on the Yo-Yo Intermittent Recovery test (P < 0.01; on average 24.0 in the youngest group and 25.2% in the oldest group over the three years) and on the speed and coordination items (P < 0.05; shuttle run: 3.6 and 5.1%; cross hopping: 11.0 and 14.8%, handball-specific shuttle run: 7.6 and 7.7%; slalom dribble test: 10.7 and 8.9%; sprint 30 m: 4.9 and 3.9%). Additionally, Yo-Yo performance and coordination with and without a ball were the most discriminating factors between the playing levels. In conclusion, youth coaches and scouts within team handball should recognise the importance of good skills and an excellent endurance for talent identification purposes.  相似文献   

13.
ABSTRACT

Field-based screening methods have a limited capacity to identify high-risk postures during netball-specific landings associated with anterior cruciate ligament (ACL) injuries. This study determined the biomechanical relationship between a single-leg squat and netball-specific leap landing, to examine the utility of including a single-leg squat within netball-specific ACL injury risk screening. Thirty-two female netballers performed single-leg squat and netball-specific leap landing tasks, during which three-dimensional (3D) kinematic/kinetic data were collected. One-dimensional statistical parametric mapping examined relationships between kinematics from the single-leg squat, and the 3D joint rotation and moment data from leap landings. Participants displaying reduced hip external rotation, reduced knee flexion, and greater knee abduction and knee internal rotation angles during the single-leg squat exhibited these same biomechanical characteristics during the leap landing (p < 0.001). Greater ankle dorsiflexion during the single-leg squat was associated with greater knee flexion during landing (p < 0.001). Ankle eversion during the single-leg squat was associated with frontal and transverse plane knee biomechanics during landing (p < 0.001). Biomechanics from the single-leg squat were associated with landing strategies linked to ACL loading or injury risk, and thus may be a useful movement screen for identifying netball players who exhibit biomechanical deficits during landing.  相似文献   

14.
ABSTRACT

This study aimed to evaluate whether an individualised sprint-training program was more effective in improving sprint performance in elite team-sport players compared to a generalised sprint-training program. Seventeen elite female handball players (23 ± 3 y, 177 ± 7 cm, 73 ± 6 kg) performed two weekly sprint training sessions over eight weeks in addition to their regular handball practice. An individualised training group (ITG, n = 9) performed a targeted sprint-training program based on their horizontal force-velocity profile from the pre-training test. Within ITG, players displaying the lowest, highest and mid-level force-velocity slope values relative to body mass were assigned to a resisted, an assisted or a mixed sprint-training program (resisted sprinting in the first half and assisted sprinting in the second half of the intervention period), respectively. A control group (CG, n = 8) performed a generalised sprint-training program. Both groups improved 30-m sprint performance by ~1% (small effect) and maximal velocity sprinting by ~2% (moderate effect). Trivial or small effect magnitudes were observed for mechanical outputs related to horizontal force- or power production. All between-group differences were trivial. In conclusion, individualised sprint-training was no more effective in improving sprint performance than a generalised sprint-training program.  相似文献   

15.
Plyometric training composed by unilateral exercises with horizontal jumping direction seems to be an effective way to improve physical performance in athletes. The present study aimed to compare the influence of a combined jumping direction and force application (horizontal-unilateral vs. vertical-bilateral) plyometric training on linear sprinting, jumping, change of direction (COD) and dynamic balance in young elite basketball players. Twenty young (U-13 to U-14) male basketball players (age: 13.2?±?0.7 years, body mass: 59.5?±?12.7?kg, height: 172.9?±?7.9?cm) were randomly assigned either to a unilateral-horizontal (UH, n?=?10) or bilateral-vertical (BV, n?=?10) plyometric group, twice a week for 6-wk. Both groups performed between 60 and 100 jumps/session. UH executed all jumps unilaterally with horizontal direction, while jumps in the BV were bilaterally with vertical direction. Performance was assessed by a linear sprinting test, vertical and horizontal jumping tests, COD tests (V-cut and 5+5?m with a 180°COD test), an ankle dorsiflexion test and dynamic balance tests (anterior and postero-lateral directions). Within-group differences showed substantial improvements (Effect size (ES):0.31–1.01) in unilateral vertical and horizontal jumping, V-cut test and postero-lateral direction with right leg after both training interventions. Furthermore, UH group also substantially improved (ES:0.33–0.78) all sprinting times and postero-lateral direction with left leg, while BV enhanced anterior direction with left leg (ES:0.25). Between-group analyses showed substantially greater improvements (ES:0.33) in 10-m and V-cut test in UH than in BV. The likely beneficial effect (small ES) achieved in sprinting abilities suggests the combination of unilateral-horizontal jumps to improve such abilities.  相似文献   

16.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

17.
Growth and maturation impact the selection, development and progression of youth athletes. Individual differences in the growth and maturity may afford a performance advantage, clouding coaches and practitioners’ perceptions regarding current ability and future potential. This may result in the exclusion of talented, yet less physically gifted athletes. Participants were 91 male (n = 47) and female (n = 44) elite British Junior tennis players, 8–17 years of age (12.5 ± 1.9 years). Height and body mass were measured and compared to growth charts; hand-wrist radiographs were taken. Skeletal age (SA) was estimated with the Fels method and contrasted to chronological age (CA). Mean height and body mass of individual players ranged between the 50th and 90th centiles for age and sex. Females were advanced in SA relative to CA (0.3–0.89 years.) from 8 years. Males were average to delayed in maturation from 8 to 12 years, but advanced in SA from 14 to 16 years (0.75–1.23 years). Individual differences in growth and maturation appear to contribute towards the selection of elite junior tennis players, with a bias towards males and females who are advanced in maturation and comparatively tall and heavy for their age. This has important implications for talent identification and development.  相似文献   

18.
The purpose of the study was to evaluate whether using only the semitendinosus as a tripled short graft would affect the electromechanical delay (EMD) of the knee flexors. EMD was evaluated in volunteers (N = 15) after they had undergone surgery for anterior cruciate ligament (ACL) reconstruction where the semitendinosus tendon alone was used as a graft. The results were compared with the intact leg and healthy controls (N = 15). After warming up, each subject performed four maximally explosive isometric contractions on an isokinetic dynamometer. Torques were measured by the dynamometer, while the electrical activity of the semitendinosus and biceps femoris muscles was detected using surface electromyography. EMD was found to be significantly increased (p = 0.001) in patients who had undergone ACL reconstruction compared to the controls. On the contrary, no significant differences (p = 0.235) were found for the biceps femoris muscle between the two groups. Similar results were found when the study group was compared with the intact leg group (p = 0.027 for semitendinosus and p = 0.859 for biceps femoris). Harvesting the semitendinosus tendon increases the EMD for the semitendinosus muscle but does not influence the EMD outcomes for the biceps femoris muscle.  相似文献   

19.
The aim was to compare fear of re-injury, patient reported function, static and dynamic tibial translation and muscle strength assessed before and 5 weeks after an anterior cruciate ligament (ACL) reconstruction between individuals who sustained a subsequent ACL graft rupture or a contralateral ACL injury within 5 years after the reconstruction, and individuals with no subsequent injury. Nineteen patients were investigated before, and 5 weeks after an ACL reconstruction with a quadruple hamstring tendon graft. At 5 years follow up, 3 patients had sustained an ACL graft rupture and 2 patients had sustained a contralateral ACL rupture. Fear of re-injury, confidence with the knee, patient reported function, activity level, static and dynamic tibial translation and muscle strength were assessed. The re-injured group reported greater fear of re-injury and had greater static tibial translation in both knees before the ACL reconstruction compared to those who did not sustain another ACL injury. There were no other differences between groups. In conclusion, fear of re-injury and static tibial translation before the index ACL reconstruction were greater in patients who later on suffered an ACL graft rupture or a contralateral ACL rupture. These factors may predict a subsequent ACL injury.  相似文献   

20.
This study aimed to investigate the effect of contact (C-SSG) and no-contact (NC-SSG) handball small-sided games (SSGs) on motion patterns and physiological responses of elite handball players. Twelve male handball players performed 10 C-SSG and 10 NC-SSG while being monitored through the heart rate (HR) and rate of perceived exertion (RPE) as physiological responses and time-motion activities profile using video-match analysis. Both game conditions resulted in similar HR responses (> 0.05), but the NC-SSG led to a higher RPE scores. The time-motion activity analysis featured NC-SSG with a greater amount of walking (855.6 ± 25.1 vs. 690.6 ± 35.2 m) and backward movements (187.5 ± 12.3 vs. 142.5 ± 8.7 m) combined with fast running (232.3 ± 8.5 vs. 159.7 ± 5.7 m) and sprinting (79.5 ± 4.7 vs. 39.7 ± 3.7 m) activities (< 0.001). Conversely, C-SSG had a higher percentage of jogging and sideway movements associated with greater frequency of jumping (0.87 ± 0.09 vs. 0.31 ± 0.06 nr) and physical contact (1.82 ± 0.55 vs. 0.25 ± 0.03 nr) events (< 0.001). No between-regimen differences were found for the number of throws (= 0.745). In addition, the RPE was significantly correlated with fast running relative distances (= 0.909, < 0.001) and sprinting relative distances (= 0.939, < 0.001). In conclusion, this investigation showed that both C-SSG and NC-SSG in team handball can effectively represent specifically oriented exercises, according to the sport-task and the performance demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号