首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Current nutrition and exercise focus during rehabilitation periods has been on reducing muscle atrophy associated with immobilisation. This case report outlines a best practice anterior cruciate ligament (ACL) rehabilitation programme undertaken by two professional rugby athletes, with the addition of an evidence-based supplementation (gelatine and vitamin C) and exercise protocol focused on collagenous tissue. Both players ruptured their left ACL and were repaired with a traditional hamstring graft. Players undertook a structured rehabilitation programme for 34 weeks before being clinically assessed ready to play. Players saw minimal changes in body composition in the early rehabilitation period (P1 – 0.8 kg; P2 – 0.4 kg). Leg lean mass reduced in both legs of Player 1 (Injured – 0.8 kg, Non-injured – 0.6 kg) at 17 weeks, with Player 2 only experiencing a loss of 0.3 kg of lean tissue in the injured leg. Both players returned to baseline body compositions after 24 weeks. Leg strength returned to a maximum at 24 and 15 weeks, respectively, with knee function returning to baseline by 30 weeks. This case report provides evidence that nutrition and rehabilitation programmes targeted at minimising the effects of disuse in both muscle and connective tissue may assist return to play after ACL injury.  相似文献   

2.
A common anterior cruciate ligament (ACL) injury situation in alpine ski racing is landing back-weighted after a jump. Simulated back-weighted landing situations showed higher ACL-injury risk for increasing ski boot rear stiffness (SBRS) without considering muscles. It is well known that muscle forces affect ACL tensile forces during landing. The purpose of this study is to investigate the effect of different SBRS on the maximal ACL tensile forces during injury prone landings considering muscle forces by a two-dimensional musculoskeletal simulation model. Injury prone situations for ACL-injuries were generated by the musculoskeletal simulation model using measured kinematics of a non-injury situation and the method of Monte Carlo simulation. Subsequently, the SBRS was varied for injury prone landings. The maximal ACL tensile forces and contributing factors to the ACL forces were compared for the different SBRS. In the injury prone landings the maximal ACL tensile forces increased with increasing SBRS. It was found that the higher maximal ACL force was caused by higher forces acting on the tibia by the boot and by higher quadriceps muscle forces both due to the higher SBRS. Practical experience suggested that the reduction of SBRS is not accepted by ski racers due to performance reasons. Thus, preventive measures may concentrate on the reduction of the quadriceps muscle force during impact.  相似文献   

3.
Anterior cruciate ligament (ACL) injuries are common in soccer. Understanding ACL loading mechanisms and risk factors for ACL injury is critical for designing effective prevention programs. The purpose of this review is to summarize the relevant literature on ACL loading mechanisms, ACL injury risk factors, and current ACL injury prevention programs for soccer players. Literature has shown that tibial anterior translation due to shear force at the proximal end of tibia is the primary ACL loading mechanism. No evidence has been found showing that knee valgus moment is the primary ACL loading mechanism. ACL loading mechanisms are largely ignored in previous studies on risk factors for ACL injury. Identified risk factors have little connections to ACL loading mechanisms. The results of studies on ACL injury prevention programs for soccer players are inconsistent. Current ACL injury prevention programs for soccer players are clinically ineffective due to low compliance. Future studies are urgently needed to identify risk factors for ACL injury in soccer that are connected to ACL loading mechanisms and have cause-and-effect relationships with injury rate, and to develop new prevention programs to improve compliance.  相似文献   

4.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

5.
Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women’s basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (= .004) and excursions (= .003) compared to the basketball control group (= .01) and soccer intervention group (= .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (= .01), but not the soccer intervention group (= .11). Although women’s soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.  相似文献   

6.
Increased lateral trunk bending to the injured side has been observed when ACL injuries occur. The purpose was to quantify the effect of mid-flight lateral trunk bending on center of mass (COM) positions and subsequent landing mechanics during a jump-landing task. Forty-one recreational athletes performed a jump-landing task with or without mid-flight lateral trunk bending. When the left and right trunk bending conditions were compared with the no trunk bending condition, participants moved the COM of the upper body to the bending direction, while the COM of the pelvis, ipsilateral leg, and contralateral leg moved away from the bending direction relative to the whole body COM. Participants demonstrated increased peak vertical ground reaction forces (VGRF) and knee valgus and internal rotation angles at peak VGRF for the ipsilateral leg, but decreased peak VGRF and knee internal rotation angles at peak VGRF and increased knee varus angles at peak VGRF for the contralateral leg. Mid-flight lateral trunk resulted in an asymmetric landing pattern associated with increased ACL loading for the ipsilateral leg. The findings may help to understand altered trunk motion during ACL injury events and the discrepancy in ACL injuries related to limb dominance in badminton and volleyball.  相似文献   

7.
Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R(2) = 0.937 ± 0.050), anterior tibial translation (R(2) = 0.916 ± 0.059), and internal tibial rotation (R(2) = 0.831 ± 0.141) than medial tibial force (R(2) = 0.677 ± 0.193) and valgus joint rotation (R(2) = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

8.
The purpose of the study was to evaluate whether using only the semitendinosus as a tripled short graft would affect the electromechanical delay (EMD) of the knee flexors. EMD was evaluated in volunteers (N = 15) after they had undergone surgery for anterior cruciate ligament (ACL) reconstruction where the semitendinosus tendon alone was used as a graft. The results were compared with the intact leg and healthy controls (N = 15). After warming up, each subject performed four maximally explosive isometric contractions on an isokinetic dynamometer. Torques were measured by the dynamometer, while the electrical activity of the semitendinosus and biceps femoris muscles was detected using surface electromyography. EMD was found to be significantly increased (p = 0.001) in patients who had undergone ACL reconstruction compared to the controls. On the contrary, no significant differences (p = 0.235) were found for the biceps femoris muscle between the two groups. Similar results were found when the study group was compared with the intact leg group (p = 0.027 for semitendinosus and p = 0.859 for biceps femoris). Harvesting the semitendinosus tendon increases the EMD for the semitendinosus muscle but does not influence the EMD outcomes for the biceps femoris muscle.  相似文献   

9.
Abstract

Numerous studies have investigated anterior cruciate ligament (ACL) injury risk by examining gender differences in knee and hip biomechanics during a side-step cutting manoeuvre since it is known that ACL injury often occurs during such a task. Recent investigations have also examined lower extremity (LE) biomechanics during side-step cutting in individuals following ACL reconstruction (ACLR). Common research practice is to compare knee and hip biomechanics of the dominant limb between groups but this can add considerable complexity for clinicians and researchers. At this time, it is not known if there is a difference in LE biomechanics between the dominant and non-dominant limb during side-step cutting. Three-dimensional kinematics and kinetics were collected while 31 healthy participants performed five, side-step cutting manoeuvres with the dominant and non-dominant limbs. Knee and hip variables examined are those commonly investigated in ACL injury literature. There were no differences between limbs in all but one variable (knee internal rotation). These results demonstrate that healthy individuals exhibit little side-to-side differences in certain LE biomechanics when performing a side-step cutting manoeuvre. These findings can be utilised by clinicians when conducting dynamic evaluations of their ACLR patients and when developing injury prevention and rehabilitation programmes.  相似文献   

10.
Background:During an experiment,a ski racer equipped with various measurement devices suffered an anterior cruciate ligament(ACL)rupture in his right knee.The aim of this study was to describe the underlying injury mechanism from a functional perspective.Methods:Eight giant slalom turns(i.e.,4 left turns),followed by 1 left turn at which the ACL injury occurred,were recorded by 2 video cameras,electromyography of 4 relevant muscle groups,inertial measurement units to measure knee and hip angles,and pressure insoles to determine ground reaction forces.Results:Due to a loss of balance,the ski racer began to slide sideways at the apex of a left turn.During sliding,his right(outside)leg was actively abducted upward without touching the ground.The ski racer then attempted to stand up again by dropping his leg back towards the snow surface.The end of this dropping was accompanied by a decrease in electromyographic activity in the knee stabilizing muscles.Once the inside edge of the outer ski caught the snow surface,a rapidly increasing peak force,knee flexion,and an aggressive sudden activation of the vastus medialis muscle were observed,while biceps femoris and rectus femoris further decreased their activation levels.This likely resulted in excessive anterior translation of the tibia relative to the femur,causing damage to the ACL.Conclusion:Our example emphasizes that ski racers should not get up until they stop sliding.Remember:“When you’re down,stay down.”  相似文献   

11.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

12.
13.
The number and type of landings performed after blocking during volleyball matches has been related to the potential risk of ACL injury. The aim of the present study was to determine whether gender affects the frequency of specific blocking landing techniques with potential risk of ACL injury from the perspective of foot contact and subsequent movement after the block used by volleyball players during competitive matches. Three matches involving four female volleyball teams (fourteen sets) and three matches involving four male volleyball teams (thirteen sets) in the Czech Republic were analyzed for this study. A Pearson chi-square test of independence was used to detect the relationship between gender and different blocking techniques. The results of the present study showed that gender affected single-leg landings with subsequent movement in lateral direction and double-leg landings. Although the total number of landings was lower for male athletes than for female athletes, a larger portion of male athletes demonstrated single leg landings with a subsequent movement than female athletes. Single leg landings with a subsequent movement have a higher potential risk of ACL injury.  相似文献   

14.
This study involved a systematic video analysis of 16 anterior cruciate ligament (ACL) injuries sustained by elite-level netball players during televised games in order to describe the game situation, the movement patterns involved, the player’s behaviour, and a potential injury mechanism. Eight of the ACL injuries were classified as “indirect contact” and eight as “non-contact”. Two common scenarios were identified. In Scenario A the player was jumping to receive or intercept a pass and whilst competing for the ball experienced a perturbation in the air. As a result the player’s landing was unbalanced with loading occurring predominantly on the knee of the injured side. In Scenario B the player was generally in a good position at ground contact, but then noticeably altered the alignment of the trunk before the landing was completed. This involved rotating and laterally flexing the trunk without altering the alignment of the feet. Apparent knee valgus collapse on the knee of the injured side was observed in 3/6 Scenario A cases and 5/6 Scenario B cases. Players may benefit from landing training programmes that incorporate tasks that use a ball and include decision-making components or require players to learn to cope with being unbalanced.  相似文献   

15.
ABSTRACT

Field-based screening methods have a limited capacity to identify high-risk postures during netball-specific landings associated with anterior cruciate ligament (ACL) injuries. This study determined the biomechanical relationship between a single-leg squat and netball-specific leap landing, to examine the utility of including a single-leg squat within netball-specific ACL injury risk screening. Thirty-two female netballers performed single-leg squat and netball-specific leap landing tasks, during which three-dimensional (3D) kinematic/kinetic data were collected. One-dimensional statistical parametric mapping examined relationships between kinematics from the single-leg squat, and the 3D joint rotation and moment data from leap landings. Participants displaying reduced hip external rotation, reduced knee flexion, and greater knee abduction and knee internal rotation angles during the single-leg squat exhibited these same biomechanical characteristics during the leap landing (p < 0.001). Greater ankle dorsiflexion during the single-leg squat was associated with greater knee flexion during landing (p < 0.001). Ankle eversion during the single-leg squat was associated with frontal and transverse plane knee biomechanics during landing (p < 0.001). Biomechanics from the single-leg squat were associated with landing strategies linked to ACL loading or injury risk, and thus may be a useful movement screen for identifying netball players who exhibit biomechanical deficits during landing.  相似文献   

16.
It is commonly believed that a torn ACL or a damaged meniscus may be associated with altered knee joint movements. The purpose of this study was to measure the tibiofemoral kinematics of ACL deficiency with concomitant meniscus deficiency. Unilateral knees of 28 ACL deficient participants were studied while ascending stairs. Among these patients, 6 had isolated ACL injuries (group I), 8 had combined ACL and medial meniscus injuries (group II), 8 had combined ACL and lateral meniscus injuries (group III) and 6 had combined ACL and medial-lateral meniscus injuries (group IV). Both knees were then scanned during a stair climb activity using single fluoroscopic image system. Knee kinematics were measured at 0°, 5°, 10°, 15°, 30° and 60° of flexion during ascending stairs. At 0°, 15° and 30° flexion of the knee, the tibia rotated externally by 13.9 ± 6.1°,13.8 ± 9.5° and 15.9 ± 9.8° in Group I. Group II and III exhibited decreased external rotation from 60° to full extension. Statistical differences were found in 0°, 15°and 30° of flexion for the 2 groups compared with Group I. In general, the tibia showed anterior translation with respect to the femur during ascending stairs. It was further determined that Group III had larger anterior translation compared with Group IV at 0° and 5° of flexion (?6.9 ± 1.7 mm vs. 6.2 ± 11.3 mm, P = 0.041; ?9.0 ± 1.8 mm vs. 8.1 ± 13.4 mm, P = 0.044). During ascending stairs the ACL deficient knee with different deficiencies in the meniscus will show significantly different kinematics compared with that of uninjured contralateral knee. Considering the varying effect of meniscus injuries on knee joint kinematics, future studies should concentrate on specific treatment of patients with combined ACL and meniscus injuries to protect the joint from abnormal kinematics and subsequent postoperative degeneration.  相似文献   

17.
ABSTRACT

The lateral tilt of the arms accompanied by trunk lateral tilt is a typical blocking manoeuvre in volleyball. However, during this unanticipated blocking movement, an associated risk of ACL injury may result. The aim of the present study was to compare associative ACL risk factors at the initial contact and the first and second peak of VGRF during an unanticipated blocking movement with different arm positions. Synchronized kinematic and kinetic data were collected for each trial of each condition. Student paired t-tests and effect size were used to determine differences between two conditions (S – with arms straight up from the body) and (T – with the arms and trunk laterally tilted). The results showed that the T condition significantly decreases knee flexion, increases VGRF at the foot contact, first peak force and increases the valgus moment at the first peak force. The values of the associated risk factors for a non-contact ACL injury appear to be related to the tilted arm position accompanied by trunk tilt towards to right lower limb during landing. The players should be taught to land with greater knee flexion and, if possible, a double-leg landing to decrease right lower limb loading during the blocking manoeuvre.  相似文献   

18.
Landing with the knee in a valgus position is recognized as a risk factor for anterior cruciate ligament (ACL) injury. Using linear and non-linear regression analyses, the purpose of this study was to examine the correlation between two-dimensional (2D) knee valgus and three-dimensional (3D) knee kinematics measured during a jump landing task. Twenty-eight female collegiate athletes participated. All participants were required to perform a continuous jump test. The average maximum angles of abduction and internal tibial rotation during landing were measured using the Point Cluster Technique. Average peak knee valgus angle was measured using a 2D approach. Linear and non-linear regression analyses between 2D valgus and 3D knee abduction, and between 2D valgus and 3D internal tibial rotation, were performed. The R2 value between 2D valgus and 3D knee abduction was significantly different from zero and had a moderate correlation for all models, whereas the R2 value between 2D valgus and 3D internal tibial rotation was not significantly different from zero. The 2D approach could be used to screen a specific group of individuals for risk of ACL injury; however, using frontal plane 2D analysis of valgus motion to evaluate internal tibial rotation is not advised.  相似文献   

19.
Landing with the knee in a valgus position is recognized as a risk factor for anterior cruciate ligament (ACL) injury. Using linear and non-linear regression analyses, the purpose of this study was to examine the correlation between two-dimensional (2D) knee valgus and three-dimensional (3D) knee kinematics measured during a jump landing task. Twenty-eight female collegiate athletes participated. All participants were required to perform a continuous jump test. The average maximum angles of abduction and internal tibial rotation during landing were measured using the Point Cluster Technique. Average peak knee valgus angle was measured using a 2D approach. Linear and non-linear regression analyses between 2D valgus and 3D knee abduction, and between 2D valgus and 3D internal tibial rotation, were performed. The R 2 value between 2D valgus and 3D knee abduction was significantly different from zero and had a moderate correlation for all models, whereas the R 2 value between 2D valgus and 3D internal tibial rotation was not significantly different from zero. The 2D approach could be used to screen a specific group of individuals for risk of ACL injury; however, using frontal plane 2D analysis of valgus motion to evaluate internal tibial rotation is not advised.  相似文献   

20.
To evaluate the value of ultrasonography in the diagnosis of anterior cruciate ligament injury (ACL injury) by conducting a systematic review and meta-analysis. A literature search was carried out in the Cochrane Library, Embase, Pubmed databases and included studies prior to April 2017. Based on inclusion and exclusion criteria, studies evaluating ultrasound to diagnose ACL injury were selected. MRI, arthroscopy and clinical-follow were considered the reference standards. The diagnostic accuracy of ultrasound was assessed using a combination of sensitivity, specificity, likelihood ratio (LR), post-test probability, diagnostic odds ratio (DOR) and by summarizing the area under the receiver operating characteristic (SROC) curve. A total of 4 studies involving 246 patients were eventually included in the analysis. In these four studies, the combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, post-test probability and DOR were 90.0% (95% CI: 77–96), 97% (95% CI: 90–99), 31.08 (95% CI: 8.75–110.41), 0.11 (95% CI: 0.05–0.24), 89% (3%) and 288.81 (95% CI: 78.51–1062.48), respectively. The area under the SROC curve was 0.98 (95% CI: 0.97–0.99). Our meta-analysis showed that ultrasound can play an important role in the diagnosis of ACL injury. Because of its high sensitivity, high specificity and high diagnostic ability, ultrasound should be a part of the standard diagnostic work-up of an ACL injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号