首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
1.在教学对顶角和部补角时,要注意些什么?答:(1)对顶角和邻补角的概念书中都是通过它们的形成过程引出的,因此,教学中必须结合图形进行讲述.(2)教学中不必强调记忆概念的词句,应侧重让学生掌握概念的本质:①两种角的位置关系都是由相交线构成的;②对顶角是指两条相交直线的交角中不相邻的两个角(两个角有公共顶点,没有公共边),而邻补角是指两条相交直线的交角中相邻的两个角(两个角有公共顶点,且有一条公共边).  相似文献   

2.
对顶角     
两条直线相交所成的四个角中,两个角的位置关系分为两类:一类是没有公共边的两个角,另一类是有一条公共边的两个角.前者叫做对顶角,后者叫做邻补角.  相似文献   

3.
两条直线相交形成的四个角,既有对顶角又有邻补角.下面我们结合例题谈谈这两种角.1.对顶角判断两个角是否对顶角,要看两个角是否由两条直线相交得到的,还要看这两个角是不是有公共顶点.对顶角是成对出现的,两条直线相交所构成的四个角中,对顶角有两对.  相似文献   

4.
1.两条直线相交得到四个角这里是指两直线相交所成角中小于平角的四个角.如图1中的∠1、∠2、∠3、∠4.这四个角的共同点是:有公共顶点O.不同点是∠1、∠3(∠2、∠4)没有公共边,而∠1、∠2(∠2、∠3等)只有一条公共边(位置关系).前  相似文献   

5.
一、考查对顶角的定义例1在下面所示的四个图形中,∠1和∠2是对顶角的是().分析:判断两个角是否是对顶角的要领是,一看是不是两条直线相交所成的角,有相交直线才有对顶角;二看是不是没有公共边.只有同时符合这两个条件,才能确定这两个角是对顶角.  相似文献   

6.
对项角和邻补角是两个基本概念,这两个概念都是按照两个角的位置关系定义的.对项角与邻补角的区别是:(1)两条直线相交时,对项角是不相邻的两个相等的角;邻补角是一边重合,另一边互为反向延长线的两个互补的角.①两条直线相交时,对项角是有公共顶点、没有公共边的两个角;邻补角是既有公共顶点、又有一条公共边的两个角.(3)对顶角必定是两对同时出现,如图1中的/l和/3,zZ和Z4;邻补角可能四对同时出现,如图1中的主1和Z4,/1和ZZ,Z3和上2,z3和/4都是邻补角,但常见的是一对单独出现,如图2中的/1和/2.对顶角与邻补…  相似文献   

7.
两条直线被第三条直线所截,构成图1所示的八个角.这是一个非常重要的基本图形,其中有公共顶点的两个角从位置关系来分,可分为对顶角和邻补角两类,没有公共顶点的角呢?  相似文献   

8.
【知识梳理】一、余角和补角1.理解三个概念(1)如果两个角的和是直角,那么称这两个角互为余角.若∠1 ∠2=90°,则∠1与∠2互为余角.(2)如果两个角的和是平角,那么称这两个角互为补角.若∠1 ∠2=180°,则∠1与∠2互为补角.(3)如图1,直线AB与CD相交于点O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对·顶·角·.由此可见,辨认对顶角要两看:一看是否是两条直线相交所成的角;二看是否是有公共顶点而没有公共边(或不相邻)的角.如图2,具备第二个条件,而不具备第一个条件,则∠1与∠2不是对顶角.如图1,∠3与∠4也是对顶角.注…  相似文献   

9.
两条直线被第三条直线所截,构成八个角,其中没有公共顶点的角有着三种特殊的位置关系.下面结合图形,举例说明. 一、深刻理解“三线八角”如图1,第一条直线a与第二条直线b(简称两条直线a、b)被第三条直线m所截(简称截线m),得到的八个角中,有对顶角、邻补角,还有以下三种角:  相似文献   

10.
角与平行线A组1.下列说法正确的是 (   )( A)有公共顶点的两个角是对顶角 .( B)相等的两角是对顶角 .( C)有公共顶点并且相等的角是对顶角 .( D)两条直线相交成的四个角中 ,有公共顶点且没有公共边的两个角是对顶角 .2 .下列说法不正确的是 (   )( A)钝角没有余角 ,但一定有补角 .( B)两个角相等且互补 ,则它们都是直角 .( C)锐角的补角比该锐角的余角大 .( D)一个锐角的余角一定比这个锐角大 .(第 3题 )3.如图所示 ,∠ AOC、∠ BOC、∠ D OE都是直角 ,则相等的角有 (   )( A) 2对 .  ( B) 3对 .( C) 4对 .  ( D) 5对 .4 .…  相似文献   

11.
诊断检测一、选择题 1.下列命题正确的是( ) (A)小于平角的角是锐角.(B)相等的角是对顶角. (C)邻补角的和等于180℃。. (D)同位角相等. 2.下列说法正确的共有( ) (1)两条直线相交所成的四个角中有一个角是直角,则这两条直线垂直; (2)两条直线相交,若有一组对顶角互补,则这两  相似文献   

12.
两条直线相交构成两类角,分别是邻补角、对顶角,让我们一起来认识它们: 1.邻补角 如图,∠1与∠2有一条共同的边,另一条边互为反向延长线,这样的两个角是邻补角. [温馨提示]①邻补角是成对出现的;②邻补角有一边是共同的,另一边互为反向延长线;③邻补角有共同的顶点;④邻补角也可以看作是一条直线与端点在这条直线上的一条射线组成的两个角.  相似文献   

13.
一、邻补角与对顶角知识点两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之,如果∠α=∠β,那么∠α与∠β不一定是对顶角;(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之,如果∠α+∠β=180°,则∠α与∠β不一定是邻补角;(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只  相似文献   

14.
例l下列说法正确的是().(1)两条直线相交,若所成的四个角中有一个角是直角,则这两条直线互相垂直(2)两条直线相交,若有一组对顶角互补,则这两条直线互相垂直(3)两条直线相交,若所成的四个角相等,则这两条直线互相垂直(4)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直  相似文献   

15.
课本54页第3题:如图1,AB、CD、EF是经过点O的三条直线,找出所有的对顶角,按怎样的方法找,才能做到不重不漏?先要明确两个问题:①课本25页讲,本书所说的角都是始还没有旋转到成为平角时所成的角,即我们只研究小于平角的角.②辨认对项角的要领是两条直线相交构成的四个角中,只有公共顶点而没有公共边的两个角.图1是三条直线相交于一点,因而找起来有一定的难度.怎样排除干扰,按怎样的方法找,才能做到不重不漏呢?这里介绍一种方法.先以OA为始边向右的方向数角有/AOC、/。4OF,如图2,又以oC为始边向右数角有ZCOF、…  相似文献   

16.
同位角、内错角、同旁内角是两条直线被第三条直线所截构成的八个角中没有公共顶点的两个角的位置关系.按照《几何》课本上对这三个概念的描述,如果图中三条直线相交,没有公共顶点的角多于八个或图中的直线多于三条,该如何确定同位角、内错角、同旁内角呢?请看下面的例题.  相似文献   

17.
角是平面几何中最基本的概念之一.它是我们今后学习三角形、多边形和圆的基础,为了帮助同学们正确理解角的相关概念。现剖析如下: 1.角的定义有公共端点的两条射线所组成的图形叫做角.公共端点叫做角的顶点,两条射线叫做角的边.由角的定义知.角有两个要素:一个顶点.两条边.缺一不可. 角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图1.射线的端点叫角的顶点.起始位置的射线(OA)叫角的始边,终止位置的射线(OB)叫角的终边.  相似文献   

18.
人教版《义务教育课程标准实验教科书·数学》七年级下册(上接七年级上册四章内容),全书包括六章,共61课时,供七年级下学期使用。具体内容如下: 第五章相交线与平行线(15课时) 主要内容: 1.两条直线相交所成的角的位置及大小关系(邻补角、对顶角); 2.两条直线平行的判定及性质; 3.平移及其基本性质。  相似文献   

19.
刘东安 《初中生》2008,(2):73-77
一、竞赛要点:   1.平面上两条不重合的直线,位置关系只有两种:相交和平行.   2.两条不同的直线,若它们只有一个公共点,就说它们相交.即,两条直线相交有且只有一个交点.   ……  相似文献   

20.
基础篇课时1 相交线、垂线诊断练习一、判断题1.两条直线相交,有公共顶点的两个角叫对顶角.(  )2.从直线外一点到直线的垂线段,叫做这个点到这条直线的距离.(  )二、填空题1.如图1,点A到BC的垂线段是、CD是点到的垂线段.图1图22.如图2,AD⊥BD,垂足为D,∠BDC∶∠ADC=1∶4,那么∠BDC=.图3图4图53.如图3,∠1和∠2是两条直线和被第三条直线所截而构成的内错角.4.如图4所示的八个角中,同位角有,同旁内角有.5.如图5,与∠EFB构成内错角的是.三、选择题1.下列各图中,∠1和∠2是对顶角的是(  )图62.如图6,∠B和∠C是(  )(A)同位角…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号