首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn均是实数,则有 (a1b1 a2b2 … anbn)2 ≤(a12 a22 … an2)(b12 b22 … bn2)等号当且仅当ai=λbi(λ为常数,i=1,2,…,n)时成立. 向量形式 设n维向量α(a1,a2,…,an),β(b1,b2,…,bn),则有 α·β≤|α|·|β|,当且仅当α∥β时取等号. 推论1 设a1,a2,…,an,b1,b2,…,bn均是实数,则有(a12 a22 … an2)~(1/2) (b12 b22 … bn2)~(1/2)  相似文献   

2.
柯西不等式:设a1,a2,…,an,b1,b2,…,bn∈R,则(a12+a22+…+a2n)(b12+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.柯西不等式具有对称和谐的结构特征,应用关键在于构造两组数ai,bi(i=1,2,…,n),进行合理的变形,找准解  相似文献   

3.
柯西不等式为:(a1b1 a2b2 … anbn)2≤(a21 a22 … a2n)(b21 b22十… b2n).其中ai,bi∈R(i=1,2,…,n).当且仅当a1/b1=a2/b2=…=an/bn时取"=",(约定ai=0时,bi=0,i=1,2,…,n).对于许多不等式问题,若善于运用柯西不等式及其等价形式,则往往会使一些棘手的问题变得简单明了.关键是构造适合不等式的条件,并能根据问题探索其等价形式.  相似文献   

4.
设a1,a2,a3,…,an;b1,b2,b3,…,bn是任意两组实数,则有((n∑i=1)aibi)2≤((n∑i=1)ai2)·((n∑i=1)bi2)当且仅当a1/b1=a2/b2=…=an/bn时,取"="号,这就是柯西不等式.  相似文献   

5.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

6.
1柯西不等式的基本形式及推广由文献知柯西不等式(cauchy)表述为:对任意a1,a2…,aa;b1,b2…ba∈R,有(a1b1 a2b2 … anbn)2(a21 a22 …a2n)(b21 b22 …b2n),当且仅当a1b1=a2b2=A=anbn时,等号成立(简记为∑ni=1aibj2n∑i=1a2i∑ni=1b2i).柯西不等式有着非常广泛的应用,下面先介绍  相似文献   

7.
笔者的解题分析文章 ,大多是结合现实情景 ,从“怎样学会解题”(从而怎样学会数学 )的角度谈解题思路的探求、解题过程的改进、解题成果的扩大 ,注重心路的历程和数学的特征 .本文将通过柯西不等式经典证明的分析 ,提炼出一个数量关系证明的程序———演算两次 .1 案例分析———柯西不等式证明的理解1.1 柯西不等式证明的传统认识———判别式法例 1  (柯西不等式 )设a1、a2 、…、an,b1、b2 、…、bn 为两组实数 ,则有不等式∑ni =1 ai2 ∑ni=1 bi2 ≥∑ni=1 aibi 2 .①等号成立当且仅当已知两组数成比例a1b1=a2b2=… =anbn.②(此处约…  相似文献   

8.
完整的柯西不等式通常是在进入大学后才具体见识和应用的,是解决相关数学问题最常用的定理之一.它的一般形式为:对于任意实数ai,bi(i=1,2,…,n),有(a1b1+a2b2+…+anbn)^2≤(a^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2),其中当且仅当ai=kbi,即ai与bi(i=1,2,…,n)成比例时取到等号.  相似文献   

9.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

10.
柯西不等式可以很好地考查学生的运算求解能力和逻辑思维能力,因而成为高中数学各类考试中的热门考点.n 维柯西不等式的一般形式:对任意的实数a1,a2,…,an 及b1,b2,…,bn ,有((nΣi=1aibi)2≤(nΣi=1a2i)(nΣi=1b2i)),其中当且仅当a1/b1=a2/b2=…=an/bn时(当bk ...  相似文献   

11.
对于柯西不等式,同学们都很清楚,对于非零实数组a1,a2,…,an和实数组b1,b2,b3,…,6n,恒有(a12 a22 … an2)(b12 622 … 6n2)≥(a1b1 a2b2 … anbn)2这就是柯西不等式的表达式,下面再给出两个推论:  相似文献   

12.
设Ⅱ1,a2,…,a。;bl,bz,…,b。为两组实数,则有不等式(ni+n;+…+n;)(6}+b;+…+b;) ≥(。1b1+a2b2+…n。b。)。,其中等号当且仅当等一万a2一·一ian时取得.这就是很有用的著名的柯西不等式,现在我用向量证明: 若ai(i一1,2,…,”)全为零时,不等式显然成立. 若b:全为零时,不等式也显然成立. 若a。和bi都不全为零时,构造向量 X={a1,a2,…,a。},Y一{bl,bz,…,b。}并设向量的夹角为臼,则 (“1 b1+a2bz+…+a.b。)。 一(xy)。一J z l。J Y J。COS。0≤J X卜J Y J 一(a}+ai+…+ai)(b}+b;+…+b;), 当且仅当cosO一0,即x∥Y时等号成立, 当x∥y D~…  相似文献   

13.
文[1]给出柯西不等式的一个有趣推广,本文将其作进一步的推广,得到: 定理设Pi∈R^+,贝4(p1a1^m+P2a2^m+…+pnan^m)(p1b1^m+p2b2^m+…+pnbn^m)≥1/n^m-2(p12/m·a1b1+p2^2/ma2b2+…+pn^2/manbn)^m,其中m,n∈N^+,当m为奇数时,ai〉0,bi〉0,i=1,2,…,n;当m为偶数时,ai,b;可为任意实数,i=1,2,…,n.  相似文献   

14.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

15.
设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a12+a22+…+a2n)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.  相似文献   

16.
定理:设a1,a2,…,an,b1,b2,…,bn是任意实数,则有:等号当且仅当a1/b1=a2/b2=…=an/bn时成立。证明:(可用判别式,求差——配方法、比值法、数学归纳法、及利用不等式xy≤x2 y2/2等方法证明)。应用柯西不等式证题的关键是要善于构造两组数:  相似文献   

17.
最值问题中,有一类在给定条件下求最大值的问题,可用构造条件的方法求解。现介绍如下: 有关定理(柯西不等式): 对于任意实数a_i,b_i(i=1,2,…n),有:(a1b1+a2b2+…+a_nb_n)~2≤(a~21+a~22+…+a~2n)·(b~21+b~22+…+b~2n).其中,当且仅当a_i=kbi时取等号。 由柯西不等式,易得如下推论: 如果:(a~21+a~22+…+a~2n=S2(常数S>0) b~21+b~22+…+b~2n=t~2(常数t>0) 那么:a1b1+a2b2+…+a_nb_n≤S·t,当且仅当a_i/b_i=s/t(i=1,2,…,n)时,取等号,即a1b1+a2b2+…+a_nb_n有最大值s·t. 例1:已知:a2+b2+c2=1,求的最大值。 分析:为了利用推论,必须  相似文献   

18.
对于任意实数a与b,都有2aba = ,2ab-.22ababb -=-令,.22ababst -==则有ast= ,bst=-.这就是“和差代换”,本文利用“和差代换”给出几个难度较大的不等式的简捷证明. 例1 已知a、b是任意的正实数,求证: 11()12nnnnnaababbabn-- L. (湖南省中学生数学夏令营试题) 证明 当ab=时,显然等号成立.当ab时,则只须证: 11()(1)()2nnnababnab - -. 设,ast= bst=-,其中0.2abs =>故有 1111()()(1)()(1)2nnnnabststnabnt - --= - ?13225441111nnnnnnCsCstCstn-- = L 11().12nnnnCsabsn == 例2 对任意实数a、b,求证 223366.2222ababab…  相似文献   

19.
文 [1]中黄毅老师给出了柯西不等式的一个变式 ,并进行推广 ,得到定理 1 对于由任意正实数构成的 m个数组 a1 i,a2 i,… ,am i( i =1,2 ,… ,n) ,有不等式∑ni=1( a1 ia2 i… am i) 1m ≤( ∑ni =1a1 i .∑ni=1a2 i… ∑ni=1am i) 1m成立 ,当且仅当 a1 1 ∶ a1 2 ∶…∶ a1 n =a2 1 ∶ a2 2 ∶…∶ a2 n=… =am 1 ∶ am 2 ∶…∶ am n时等号成立 .笔者经过研究发现 ,利用定理 1,合理地选择数组 ,能使中数期刊上的一类根式和下确界不等式得到简单的证明 ,并且能得到一个一般性结论 .例 1 已知 a,b∈ R+ ,a +b =1,求证a +12 +b +12 >62 +22…  相似文献   

20.
张明远 《数学教学研究》2013,32(4):40-42,45
1柯西不等式的证明定理(柯西不等式)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.证法1(比较法)因为(a2+b2)(c2+d2)-(ac+bd)2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号