首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设空间直线过定点(x。,y。,z o),其方向向量V={l,m、n}, fx=x 0+It -则{y:y。+mt (t为参数)称为直线的参数式方程。 Iz=z o+nt本文将探讨直线参数式方程的若干应用。 (一)求 交 点 fx=x o I-It把直线方程2y:y。+mt(t为参数)代入曲面方程f(x,y、z)=o,得f相似文献   

2.
在直角坐标系下,如果一条直线l经过已知点P_0(x_0,y_0),倾角为a,那么它的参数方程为 {x=x_0 tcosa y=y_0 tsina (t为参数) (*) 这个方程很重要,应让学生很好理解和掌握。 (一) 关于参数t的几何意义方程(*)中,参数t的几何意义是直线l上的定点P_0(x_0,y_0)与l上的任意一点P(x,y)所成的有向线段P_0P的数量P_0P,即t=P_0P。当P_0P与l同向时,有  相似文献   

3.
过定点P_0(x_0,y_0)、倾斜角为α(0≤α<π)的直线参数方程为其中t是这直线上点P(x,y)所对应的参数(t是实数),并且规定对于直线(*)上P_0上方的点,t>0;对于P_0下方的点,t<0。应当指出: 1.直线(*)上的点P(x,y)与参数t之间是一一对应的,且|t|=|P_0P|,所以  相似文献   

4.
直线l的标准参数方程为x=x0+tcosθ y=y0+tsinθ(t为参数),其中定点M(x0,y0)∈l,θ为l的倾斜角,t是定点M(x0,y0)到动点P(x,y)∈l的有向线段的数量MP,就是这个t困惑了不少同学.以下举例谈直线参数方程的简单应用.一、求直线的倾斜角例1求直线x=3+tsin20° y=1-t{cos20°t为参数)的倾斜角.错解设直线方程为x=3+tcosθ y=1+tsinθ(t为参数,θ为倾斜  相似文献   

5.
<正>直线与圆锥曲线的位置关系是高中解析几何的重要内容,高考解答题对解析几何的考查经常是围绕直线与圆锥曲线的位置关系进行的,如何设出直线方程,是我们解决问题的首要工作.若直线经过x轴上的点(m,0),可设直线方程为以下两种形式:(1)y=k(x-m),其中k为直线的斜率;(2)x=ty+m,此处t=1/k.  相似文献   

6.
在平面直角坐标中,直线参数方程的标形式为{x=x0+tcosα,y=y0+tsinα,其中P(x0,y0)为直线经过的定点,α为直线的倾斜角设点A(x,y)为直线上的动点.则参数t的几何意义是有向线段PA的长,且当点A在点P的上方时t=|PA|,当点A在点P的下方时t=-|PA|,当点A与P重合时t=0.  相似文献   

7.
<正>在平面内,已知点P(x_0,y_0),直线l:Ax+By+C=0,则点P到直线l的距离公式d=|Ax-By+C|/(A2+B2+B2)2)(1/2)。解析几何中的轨迹问题、最值问题、曲线与直线的位置关系等都与点到直线的距离有关。因此,应用点到直线的距离公式能够解决许多重要问题。一、求轨迹方程例1求两条直线l_1:3x+4y+1=0,l_2:5x+12y-1=0的交角平分线方程。  相似文献   

8.
<正>苏教版选修4-4中直线的参数方程:过点P0(t),倾斜角为α的直线的参数方程是{x=x0+tcosα,y=y0+tsin{α(t为参数),其中t表示有向线段→P0P的数量,P(x,y)为直线上任意一点.在直线与圆锥曲线相交求交点弦长问题时,可以利用这种参数方程形式通过t的几何意义,将计算简化.  相似文献   

9.
<正>直线的参数方程是由直线经过的定点和其倾斜角确定的.经过定点P_0(x_0,y_0),倾斜角为α的直线的参数方程为{x=x_0+tcosα,y=y_0+tsinα(为参数).我们不妨把直线参数方程的这种形式称之为直线参数方程的标准式.一、直线l参数方程中参数t的深层理解设直线l过定点P(x_0,y_0),P,P_1,P_2是直线l上的点,在参数方程标准式中相应参数值分別为t、t_1、t_2,则(1)P与P_0的距离为|PP_0|=|t|.  相似文献   

10.
现行中学数学课本中,以例题的形式求出了经过点P(x_0,y_0),倾斜角为α的直线l的参数方程 x=x_0 tcosα (t为参数)(*) y=y_0 tsinα但没有介绍其应用.然而笔者发现,此参数方程能在多种场合收到神奇的解题效果.在数学过程中,尤其在总复习时,应予以重视. 一、有利于化简计算参数方程(*)的一个重要特征是参数的两个系数的平方和为1,即cos~2α sin~2α=1.我们称(*)为直线参数方程的标准形式.在这种形式下,参数t有着明显的几何  相似文献   

11.
已知圆O1:x2+ y2+ D1x+ E1y+ F1 =0,圆O2:x2+y2+ D2x+E2y+ F2 =0,D1≠D2,E1≠E2,两圆方程相减得(D1-D2)x+(E1-E2)y+F1-F2 =0,此方程代表一条直线,记作l,叫做两圆的根轴.根据两圆的位置关系,可以得到直线l如下有关结论[1].  相似文献   

12.
文[1]中给出了直线和圆的位置关系及其应用,今再给出平面和球的位置关系及其应用,作为原文的补充。命题关于平面π:Ax+By+Cz+D=0与球O:(x-a)~2+(b-y)~2+(c-z)~2=R~2,O(a,b,c)到π的距离为:则  相似文献   

13.
吴燕 《考试周刊》2014,(11):51-52
<正>在新课程标准下,苏教版《数学选修4-4》中安排了直线的参数方程,它是对《数学必修2》第二章平面解析几何初步中直线方程知识的进一步延伸,同时也为研究直线与圆、直线与圆锥曲线的问题提供了另一条途径.数学实践和学生体会表明:用直线的参数方程解决一些问题,有时更方便和简捷,本文通过具体的例子加以说明.一、计算问题利用直线参数方程x=x0+tcosαy=y0+tsinα(t为参数)中参数t的几何意义解决与距离、弦长、线段长、点的坐标有关的问题.例1:已知直线l过点P(2,0),斜率为43,直线l和抛物线y2=  相似文献   

14.
<正>一、基础知识,要点回顾1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(xa2)2+(y-b2)2=r22(r2>0).二、题型分类,深度剖析题型一:直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;  相似文献   

15.
I、点斜式直线参数方程的标准形式:爸过定点尸。(x。,y。)倾斜角为a的直线的参数方程: 设尸(',y)是直线上任意一点,令尸.尸,t.那么:戈一劣。=fcosa. y一yo=ts ina。.'.点斜式参数方程的标准形式是:(戈=:。+teo:a烤Ly=y。+t:ioa(t为参数0《a(二)(1)t的系数平方和等于1,它是点斜式参数方程的标准形式.(2)参数t对应于尸(二,y),所以它的几何意义是:0 00一一>< 厂l|l!11、、t=P。尸=(尸和尸。重合)(尸在尸。的上方或右方)(尸在尸。的下方或左方) (3)利用t的几何意义,可以求得直线  相似文献   

16.
<正>一、问题的提出学习了高中数学选修4-4"极坐标与参数方程"之后,年级进行了一次周考,其中的一道填空题如下:过点P(4,3)的直线l_1的参数方程为x=4+6/13(1/2)t,y=3+4/13(1/2)t,y=3+4/13(1/2)t(t为参数),l_1与直线l_2:x+y-2=0的交点为Q,求|PQ|.测试结果是全年级96.8%的答案是13(1/2)t(t为参数),l_1与直线l_2:x+y-2=0的交点为Q,求|PQ|.测试结果是全年级96.8%的答案是13(1/2)2,正确作答的不到4%.调查走访学生,回  相似文献   

17.
我们知道,参数方程是解析几何中的一个难点,而直线的参数方程及其应用又是该章节的重点,因此,深刻系统全面地对直线的参数方程及其应用进行分析是十分必要的.在平面直角坐标系中,经过定点P_0(x_0,y_0),倾角为α(0≤α≤π)的直线(如图)的参数方程是x=x_0 tcosα y=y_0 tsinα其中t是参数.它的几何意义是:|t|的大小等于定点P_0(x_0,y_0)到动点P(x,y)的距离,而t表示有向线段P_0P的数量,P点在P_0点的上方t为正,P点在P_0点的下方t为负.  相似文献   

18.
齐次线性方程组a_1x+b_1y+c_1z=0a_2x+b_2y+c_2z=0(*)a_3x+b_3y+c_3z=0的系数行列式是D=a_1 b_1 c_1a_2 b_2 c_2a_3 b_3 c_3显然,当 D0时,方程组(*)有唯一解,即x=y=z=0,或叫做零解.但当 D=0时,方程组(*)除零解外还有无穷多个非零解.关于方程组(*)有非零解的充要条件有下述定理:定理:齐次线性方程组(*)有非零解的  相似文献   

19.
圆锥曲线是解析几何中的重要内容,与圆锥曲线有关的轨迹问题也是教学的一个难点.本文给出圆锥曲线弦的定比分点的轨迹方程的几个通式,并说明它的应用.命题1设斜率为k的直线与椭圆b2x2+a2y2=a2b2(a>0,b>0)相交于A、B两点,动点M满足AM=λMB(λ为常数),则点M的轨迹方程是2(22)2(1)(2222b x+a ky+λ4?λb x+a y?a2b2)(b2+a2k2)=0.证明设点M(x,y),直线AB的参数方程为x0=x+t,y0=y+kt(t为参数),代入椭圆方程并整理得:(b2+a2k2)t2+2(b2x+a2ky)t+b2x2+a2y2?a2b2=0.设点A(x1,y1),B(x2,y2)对应的参数分别为t1,t2,则:22222t1+t2=?2(b x+a ky)/(b+a…  相似文献   

20.
运用直线的参数方程解题,就是运用直线的参数方程的标准式{x=x0+tcosa, y=y0+tsina (t为参数)中的参数t的几何意义解题.参数t的几何意义就是直线上的定点M0(x0,y0)到直线上的动点M(x,y)的有向线段的数量.当M点在M0点上方时,f&;gt;0;当M点在M0点下方时,t&;lt;0;当M点与M0点重合时,t=0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号