首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

2.
中值定理是数学分析中非常重要的定理之一。本文绘出了拉格朗日中值定理“中间点”的渐近性定理。还给出了对于任意的ξ∈(a,b),函数f(x)满足什么条件时,必存在x1,x2∈(a,b),x1<ξ<x2,使定理的结论成立即f(x2)-f(x1)=f'(ξ)(x2-x1)。  相似文献   

3.
从所周知,闭区间的连续函数有几个理想的性质,其中介值定理在研究函数方程的根、不动点等问题方面应用非常广泛。下面对介值定理再作进一步的探讨。命题1若函数f(x)在[a,b]连续,且有,则存在ξ∈[a,b]使f(ξ)=ξ证明作辅助函数F(x)=f(x)-x,易知函数F(x)在[a,b]连续,由已知,有f(x)∈[a,b],即a≤f(x)≤b,从而F(a)=f(a)-a,F(b)=f(b)-b≤0当F(a)=0或F(b)=0时,取ξ=a或ξ=b即可当F(a)>0,F(b)<0时,F(a)·F(b)<0,根据零点定理,至少存在一点ζ∈(a,b)使F(ζ)=0,即f(…  相似文献   

4.
罗尔定理、拉格朗日定理、柯西定理统称为微分学中值定理。这几个定理是在定义了导数的概念并且在掌握了微分法的基础上,为了进一步研究导数的更深刻的性质而逐步引入的。为探索拉格日定理的一些问题,先回顾一下罗尔定理的内容:如果函数f(x)满足(1)在闭区间[a、b]上连续;(2)在开区间(a,b)内可导;(3)在区间端点的函数值相等,即f(a)=f(b)。那么在(a,b)内至少有一点ξ(a<ξ相似文献   

5.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

6.
数学题是无穷尽的,题型是有限的,要熟练掌握并非难事,也并非题海所能奏效,以下讲几种题型的解法。Ⅰ.微分中值定理中欲证结论:至少存在一个ξ∈(a,b)使得f~(n)(ξ)=k(≠0),或有关a,b,f(a),f(b),ξ,f~(n)(ξ)所构成的代数式的证法。证题思路:作辅助函数F(x),验证F(x)满足罗尔定理条件,由定理得出命题的证明。常用的辅明函数F(x)的作法有两种:原函数法及常数k值法。(1)原函数法(或微分方程法)求作辅助函数F(x)的程序:①将欲证结论中的ξ换成x;②通过恒等变形将式子化为易消去导数符号的形式;  相似文献   

7.
微分中值定理的应用   总被引:2,自引:0,他引:2  
微分中值定理是数学分析中非常重要的基本定理,它是沟通函数与其导数之间关系的桥梁.本文论述了微分中值定理在求极限、证明不等式以及确定根的存在性等7个方面的应用,以加深对微分中值定理的理解.  相似文献   

8.
该文讨论了微分中值定理有关f(ξ)与f(x)极限的关系。  相似文献   

9.
在高中数学“微积分初步”中导数的应用这一章,讲了拉格朗日中值定理,并给出如下形式: f(b)-f(a)=f′(ξ)(b-a),a<ξ1时,证明不等式e~x>ex成立)就是应用中值定理上述形式证明的。当然,例3  相似文献   

10.
《数学分析》中各种中值定理中的中值(中间点)ξ,一般是不容易求出来的,但通过对中值ξ渐近性的研究,可以知道它的相对位置。如能求得 (ξ-a)/(b-a)=θ_0,则可知当b充分接近于a时,中值ξ将充分接近于a+θ_0(b-a)。有鉴于此,近年来有些作者致力于对中值ξ渐近性的研究,并得出了若干结果。如1980年,周肇锡、刘绪宏在最高阶不为0的导数连续的条件下,研究了微分中值定理及泰勒公式;1982年,Alfonso G. Azpeitia  相似文献   

11.
用二分法求方程近似解的过程中,用到了根的存在性定理:“若函数f(x)在闭区间[a,b]上连续,且f(a)f(b)〈0,则在(a,b)内至少存在一点x0,使得f(x0)=0”.在教学中,我们遇到一类有趣的问题:求解时涉及到函数的极值,可是极值点却求不出来.对此,同学们大多束手无策,本文利用根的存在性定理给出一种“设而不求”的破解方法.  相似文献   

12.
对许多数学命题的论证,若能引入一个恰当的函数,再运用已知的定理、公式,问题就可迎刃而解.然而怎样作辅助函数呢?这是学生中较为普遍地存在的困难.下面就微分中值定理的证明及其应用这个方面谈谈我对此问题的一点体会.一、用Rolle定理来证明Lagrange、Cauchy二定理的辅助函数1.Lagrange定理.设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在该区间内至少存在一点ξ:(a<ξ相似文献   

13.
微分中值定理的用途很广,本文借助微分中值定理,从定积分定义出发,找出定积分与不定积分的内在联系,由所得结果得出定积分的计算方法。 1、定积分的定义 若函数f(x)在区间〔a,b〕上连续,用点:a=x_0相似文献   

14.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

15.
不等式是初等数学的重要内容之一,在初等数学和高等数学中都广为应用,证明不等式的方法很多,但有的比较烦琐,如果用导数便简单明了,本文试说明导数在证明不等式中的应用.一、用微分中值定理证明不等式微分中值定理:若函数f(x)满足条件:(i)在闭区间〔a,b〕上连续;(ii)在开区间(a,b)内可导,则在区间(a,b)内至少存在一点C,使得f(b)-f(a)=f′(c)(b-a)若不等式的一端是某一个函数F(x)在两点之差F(b)-F(a),则在区间〔a,b〕上利用微分中值定理,再将F′(C)适当放大或缩小.  相似文献   

16.
本文利用《数学分析》中基本理论,从数列极限、函数导数、微分中值定理、定积分中值定理、函数的泰勒公式、函数的幂级数展开形式六个方面来证明同一个不等式。  相似文献   

17.
如果函数以f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f'(ξ)=f(b)-f(a)/b-a或f(b)-f(a)=f'(ξ)(b-a),这就是拉格朗日中值定理的内容。  相似文献   

18.
微分学中,费尔马(Fermat)定理、罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(Cauchy)定理和泰勒(Taylor)定理因为都涉及导数在给定区间内的一个中间值,因此把这些定理叫做微分学中值定理。它们是微分学的理论基础。 费尔马定理 若函数f(x)在点x_0的某邻域U(x_0,δ)内有极值,且在点x_0可导,则f(x_0)=0,它的几何意义是如果曲线y=f(x)在点x_0处具有极值且有切线,则切线必为水平的。由费尔马定理可以导出下面的罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且有f(a)=f(b),则在(a,b)内至少有一点ξ,使f(ξ)=0。  相似文献   

19.
柯西中值定理是数学中非常重要的定理之一,它被广泛的应用在相关数学问题的证明当中。柯西中值定理认为,两个不同的函数在相关条件满足的情况下,存在一个点ξ,使得这两个函数在该点处的导数之比等于其在区间端点函数值的差之比。但是柯西中值定理并没有明确给出计算点ξ的方法以及相关极限和导数的求法。本文将柯西中值定理中的ξ看作是定义区间端点的函数,通过一系列的推导过程,给出了ξ的函数表达式,并求出了ξ在区间端点处的一、二阶导数值以及θ在区间端点处的极限和导数,为解柯西中值定理中ξ值的相关问题提供了新的思路和角度.  相似文献   

20.
积分中值定理在一般的《数学分析》教材中是这样叙述的:当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-1),其中ξ∈[a,b}本将对该结论做一点推广,即当f(x)在[a,b]上连续时,有baf(x)dx=f(ξ)(b-a),其中g∈(a,b)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号