首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean +/- s: age 24 +/- 2 years, height 1.78 +/- 0.1 m, mass 72.2 +/- 5.0 kg, VO2max 57.8 +/- 4 ml x kg(-1) x min(-1)) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 +/- 10 beats x min(-1)). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater (P < 0.05) in intermittent exercise (81.3 +/- 0.2 l x min(-1)) than steady-rate exercise (72.4 +/- 11.4 l x min(-1)). The rating of perceived exertion for the session as a whole was 15 +/- 2 during soccer-specific intermittent exercise and 12 +/- 1 for continuous exercise (P < 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

2.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

3.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (V02) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine V02max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% V02max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% V02max, separated by 50 s of recovery at ~55% V02max. Significantly greater (P<0.05) peak power (intermittent vs continuous: 629 ± 199 vs 601 ± 204W) and average power (intermittent vs continuous: 328±39.0 vs 321 ±42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak V02, total V02 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

4.
The aim of this study was to devise a laboratory-based protocol for a motorized treadmill that was representative of work rates observed during soccer match-play. Selected physiological responses to this soccer-specific intermittent exercise protocol were then compared with steady-rate exercise performed at the same average speed. Seven male university soccer players (mean - s : age 24 - 2 years, height 1.78 - 0.1 m, mass 72.2 - 5.0 kg, VO 2max 57.8 - 4 ml·kg -1 ·min -1 ) completed a 45-min soccer-specific intermittent exercise protocol on a motorized treadmill. They also completed a continuous steady-rate exercise session for an identical period at the same average speed. The physiological responses to the laboratory-based soccer-specific protocol were similar to values previously observed for soccer match-play (oxygen consumption approximately 68% of maximum, heart rate 168 - 10 beats·min -1 ). No significant differences were observed in oxygen consumption, heart rate, rectal temperature or sweat production rate between the two conditions. Average minute ventilation was greater ( P ? 0.05) in intermittent exercise (81.3 - 0.2l·min -1 ) than steady-rate exercise (72.4 - 11.4l·min -1 ). The rating of perceived exertion for the session as a whole was 15 - 2 during soccer-specific intermittent exercise and 12 - 1 for continuous exercise ( P ? 0.05). The physiological strain associated with the laboratory-based soccer-specific intermittent protocol was similar to that associated with 45 min of soccer match-play, based on the variables measured, indicating the relevance of the simulation as a model of match-play work rates. Soccer-specific intermittent exercise did not increase the demands placed on the aerobic energy systems compared to continuous exercise performed at the same average speed, although the results indicate that anaerobic energy provision is more important during intermittent than during continuous exercise at the same average speed.  相似文献   

5.
Energy system contribution to 1500- and 3000-metre track running   总被引:1,自引:0,他引:1  
The aim of the present study was to quantify the contributions of the aerobic and anaerobic energy systems to 1500- and 3000-m track running events during all-out time-trials performed individually on a synthetic athletic track. Ten 3000-m (8 males, 2 females) and fourteen 1500-m (10 males, 4 females) trained track athletes volunteered to participate in the study. The athletes performed a graded exercise test in the laboratory and two time-trials over 1500 or 3000 m. The contributions of the energy systems were calculated by measures of race oxygen uptake, accumulated oxygen deficit (AOD), race blood lactate concentration, estimated phosphocreatine degradation and some individual muscle metabolite data. The relative aerobic energy system contribution (based on AOD measures) for the 3000 m was 86% (male) and 94% (female), while for the 1500 m it was 77% (male) and 86% (female). Estimates of anaerobic energy expenditure based on blood lactate concentrations, while not significantly different (P > 0.05), were generally lower compared with the AOD measures. In conclusion, the results of the present study conform with some recent laboratory-based measures of energy system contributions to these events.  相似文献   

6.
目的:通过对体育学院大学生进行为期一周的间歇性低氧刺激,观察刺激前后递增负荷运动心率、通气量、摄氧量及定量负荷时血乳酸的变化,探讨间歇性低氧刺激对人体最大摄氧量及通气阈的影响。方法:本实验分两个阶段,每阶段做两次运动负荷。12名体育系男生在实验室常氧条件下在跑台上采用Bruce方法进行递增负荷运动至力竭。间隔3天后进行75%最大摄氧量的定量负荷运动,运动时间为9min,定量负荷后立即进行连续7天,每天1h的12%~10%O2的常压间歇性低氧刺激。低氧刺激完成后第二天再次进行上述两种运动方案。在极限递增负荷至力竭运动前后分别测定心率(HR)、递增负荷至力竭时间(t)、最大摄氧量(VO2max%)、血乳酸(Bla)及定量负荷时Bla等指标。结果:(1)低氧刺激后,递增负荷至力竭运动时HRmax增加(P0.01),VEmax上升(P0.01),呼吸商(R)增加(P0.05),t明显延长(P0.05),Bla明显增加(P0.05),定量负荷运动Bla显著降低(P0.05);(2)间歇性低氧刺激后通气阈时,HR、VE、VO2max%、HRmax%均显著性变化(P0.05),其中VE、VO2max%低氧刺激前后差异非常显著(P0.01)。结论:经过间歇性低氧刺激,受试者在进行递增负荷的力竭性运动时运动时间明显延长,心率在运动后增加,人体通气阈时相对应的心率百分数、最大摄氧量百分比、肺通气量均明显提高,这表明人体有氧耐力和极限负荷运动能力均得到增强。  相似文献   

7.
This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical level of water deficit (approximately 3-4%; mode dependent) affecting anaerobic performance is larger than the deficit (approximately 2%) impairing endurance performance. A critical performance-duration component (> 30 s) may also exist. Moderate dehydration (approximately 3% body weight; precise threshold depends on work/recovery ratio) impairs repeated anaerobic bouts, which place an increased demand on aerobic metabolism. Interactions between dehydration level, dehydration mode, testing mode, performance duration, and work/recovery ratio during repeated bouts make the dehydration threshold influencing anaerobic performance mode dependent.  相似文献   

8.
The aim of the present study was to quantify the contributions of the aerobic and anaerobic energy systems to 1500- and 3000-m track running events during all-out time-trials performed individually on a synthetic athletic track. Ten 3000-m (8 males, 2 females) and fourteen 1500-m (10 males, 4 females) trained track athletes volunteered to participate in the study. The athletes performed a graded exercise test in the laboratory and two time-trials over 1500 or 3000?m. The contributions of the energy systems were calculated by measures of race oxygen uptake, accumulated oxygen deficit (AOD), race blood lactate concentration, estimated phosphocreatine degradation and some individual muscle metabolite data. The relative aerobic energy system contribution (based on AOD measures) for the 3000?m was 86% (male) and 94% (female), while for the 1500?m it was 77% (male) and 86% (female). Estimates of anaerobic energy expenditure based on blood lactate concentrations, while not significantly different (P?>?0.05), were generally lower compared with the AOD measures. In conclusion, the results of the present study conform with some recent laboratory-based measures of energy system contributions to these events.  相似文献   

9.
The aim of this study was to examine the variability of the oxygen uptake (VO2) kinetic response during moderate- and high-intensity treadmill exercise within the same day (at 06:00, 12:00 and 18:00 h) and across days (on five occasions). Nine participants (age 25 +/- 8 years, mass 70.2 +/- 4.7 kg, VO2max 4137 +/- 697 ml x min(-1); mean +/- s) took part in the study. Six of the participants performed replicate 'square-wave' rest-to-exercise transitions of 6 min duration at running speeds calculated to require 80% VO2 at the ventilatory threshold (moderate-intensity exercise) and 50% of the difference between VO2 at the ventilatory threshold and VO2max (50% delta; high-intensity exercise) on 5 different days. Although the amplitudes of the VO2 response were relatively constant (coefficient of variation approximately 6%) from day to day, the time-based parameters were more variable (coefficient of variation approximately 15 to 30%). All nine participants performed replicate square-waves for each time of day. There was no diurnal effect on the time-based parameters of VO2 kinetics during either moderate- or high-intensity exercise. However, for high-intensity exercise, the amplitude of the primary component was significantly lower during the 12:00 h trial (2859 +/- 142 ml x min(-1) vs 2955 +/- 135 ml x min(-1) at 06:00 h and 2937 +/- 137 ml x min(-1) at 18:00 h; P < 0.05), but this effect was eliminated when expressed relative to body mass. The results of this study indicate that the amplitudes of the VO2 kinetic responses to moderate- and high-intensity treadmill exercise are similar within and across test days. The time-based parameters, however, are more variable from day to day and multiple transitions are, therefore, recommended to increase confidence in the data.  相似文献   

10.
The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62% 33% and 17% respectively. For the men, the anaerobic contributions averaged 63%39% and 20%respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.  相似文献   

11.

This review examines the influence of dehydration on muscular strength and endurance and on single and repeated anaerobic sprint bouts. Describing hydration effects on anaerobic performance is difficult because various exercise modes are dominated by anaerobic energy pathways, but still contain inherent physiological differences. The critical level of water deficit (~ 3–4%; mode dependent) affecting anaerobic performance is larger than the deficit (~ 2%) impairing endurance performance. A critical performance-duration component (> 30 s) may also exist. Moderate dehydration (> 3% body weight; precise threshold depends on work/recovery ratio) impairs repeated anaerobic bouts, which place an increased demand on aerobic metabolism. Interactions between dehydration level, dehydration mode, testing mode, performance duration, and work/recovery ratio during repeated bouts make the dehydration thresh-old influencing anaerobic performance mode dependent.  相似文献   

12.
The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62%, 33% and 17%, respectively. For the men, the anaerobic contributions averaged 63%, 39% and 20%, respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.  相似文献   

13.
最大累积氧亏(MAOD)是目前认为有效的、无损伤性的无氧能力间接测定方法,其测试过程受诸多因素的影响,文章介绍了MAOD的检测方法并从超极量运动持续时间、ETED的确立等方面对其检测过程中的主要影响因素作一简要回顾。  相似文献   

14.
The aim of this study was to determine the reproducibility of the maximal accumulated oxygen deficit and the associated exercise time to exhaustion during short-distance running. Fifteen well-trained males (mean - s : VO 2max = 58.0 - 4.6 ml.kg -1 .min -1 ) performed the maximum accumulated oxygen deficit test at an exercise intensity equivalent to 125% VO 2max . The test was repeated at the same time of day on three occasions within 3 weeks. There was no significant systematic bias between trials for either maximum accumulated oxygen deficit (mean - s : trial 1 = 69.0 - 13.1; trial 2 = 71.4 - 12.5; trial 3 = 70.4 - 15.0 ml O 2 Eq.kg -1 ; ANOVA, F = 0.70, P = 0.51) or exercise time to exhaustion (trial 1 = 194 - 31.1; trial 2 = 198 - 33.2; trial 3 = 201 - 36.8 s; F = 1.49, P = 0.24). In addition, other traditional measures of reliability were also favourable. These included intraclass correlation coefficients of 0.91 and 0.87, and sample coefficients of variation of 6.8% and 5.0%, for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. However, the '95% limits of agreement' were 0 - 15.1 ml O 2 Eq (1.01 2 / 1 1.26 as a ratio) and 0 - 33.5 s (1.0 2 / 1 1.18 as a ratio) for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. We estimate that the sample sizes required to detect a 10% change in exercise time to exhaustion and maximum accumulated oxygen deficit after a repeated measures experiment are 10 and 20 respectively. Unlike the results of previous maximum accumulated oxygen deficit studies, we conclude that it is not a reliable measure.  相似文献   

15.
The aim of this study was to determine the reproducibility of the maximal accumulated oxygen deficit and the associated exercise time to exhaustion during short-distance running. Fifteen well-trained males (mean +/- s: VO2max = 58.0+/-4.6 ml x kg(-1) x min(-1)) performed the maximum accumulated oxygen deficit test at an exercise intensity equivalent to 125% VO2max. The test was repeated at the same time of day on three occasions within 3 weeks. There was no significant systematic bias between trials for either maximum accumulated oxygen deficit (man +/- s: trial 1 = 69.0+/-13.1; trial 2 = 71.4+/-12.5; trial 3 = 70.4+/-15.0 ml O2 Eq x kg(-1); ANOVA, F = 0.70, PP= 0.51) or exercise time to exhaustion (trial 1 = 194 + 31.1; trial 2 = 198 + 33.2; trial 3 = 201 + 36.8 s; F= 1.49, P = 0.24). In addition, other traditional measures of reliability were also favourable. These included intraclass correlation coefficients of 0.91 and 0.87, and sample coefficients of variation of 6.8% and 5.0%, for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. However, the '95% limits of agreement' were 0+/-15.1 ml O2 Eq (1.01 multiply/divide 1.26 as a ratio) and 0+/-33.5 s (1.0 multiply/divide 1.18 as a ratio) for maximum accumulated oxygen deficit and exercise time to exhaustion respectively. We estimate that the sample sizes required to detect a 10% change in exercise time to exhaustion and maximum accumulated oxygen deficit after a repeated measures experiment are 10 and 20 respectively. Unlike the results of previous maximum accumulated oxygen deficit studies, we conclude that it is not a reliable measure.  相似文献   

16.
Whole-body energy expenditure for heavy/severe exercise is currently accounted for by either: (1) anaerobic and oxygen uptake measures during exercise where recovery energy expenditure is omitted; or (2) oxygen uptake during, and an EPOC (excess post-exercise oxygen consumption), measure following exercise where substrate level phosphorylation during exercise is considered part of EPOC. Simultaneous direct/indirect calorimetry enabled us to determine if a thermodynamic reversal (i.e. heat consumption) takes place as the highly exothermic pyruvate to lactate reaction proceeds in the opposite direction. Reversibility implies that oxygen uptake (e.g. EPOC) can indeed account for rapid glycolytic ATP production regardless if lactate is formed or not (e.g. 1.2 g glucose catabolism = 20.9 kJ x l O2(-1)). Cultured hybrid cells and mouse cardiac muscle fibres were utilized in simultaneous calorimetry and respirometry experiments where pyruvate or lactate was predominantly oxidized. The calorimetric to respiratory ratio was determined using heat flux (pW x cell(-1)) and oxygen flux (pmol x s(-1) cell(-1)) measures. Ten cell experiments gave calorimetric to respiratory ratios that showed no statistical difference (P= 0.97) whether cells respired predominantly on lactate (-516+/-53 kJ x mol O2(-1)) or pyruvate (- 517+/-89 kJ x mol O2(-1)). In three cardiac preparations, the calorimetric to respiratory ratio was -502+/-15 kJ x mol O2(-1) for lactate and -506+/-47 kJ x mol O2(-1) for pyruvate, again a non-significant difference (P= 0.91). Heat consumption did not occur during lactate oxidation. These results suggest that rapid glycolytic ATP and lactate production, and lactate oxidation, are both independently associated with heat production and thus represent separate and additive components to the measurement of total energy expenditure for exercise and recovery.  相似文献   

17.
The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.  相似文献   

18.
Abstract

Energy turnover was assessed in two conditions of mixed ultra-endurance exercise. In Study 1, energy expenditure and intake were measured in nine males in a laboratory over 24 h. In Study 2, energy expenditure was assessed in six males during an 800-km Adventure race (mean race time 152.5 h). Individual correlations between heart rate and oxygen uptake ([Vdot]O2) were established during pre-tests when kayaking, cycling, and running. During exercise, energy expenditure was estimated from continuous heart rate recordings. Heart rate and [Vdot]O2 were measured regularly during fixed cycling work rates to correct energy expenditure for drift in oxygen pulse. Mean energy expenditure was 18,050 ± 2,390 kcal (750 ± 100 kcal · h?1) and 80,000 ± 18,000 kcal (500 ± 100 kcal · h?1) in Study 1 and Study 2 respectively, which is higher than previously reported. Energy intake in Study 1 was 8,450 ± 1,160 kcal, resulting in an energy deficit of 9,590 ± 770 kcal. Body mass decreased in Study 1 (?2.3 ± 0.8 kg) but was unchanged in Study 2. Fat mass decreased in Study 2 (?2.3 ± 1.5 kg). In Study 1, muscle glycogen content decreased by only 60%. Adventure racing requires a high energy expenditure, with large inter-individual variation. A large energy deficit is caused by inadequate energy intake, possibly due to suppressed appetite and gastrointestinal problems. The oxygen pulse, comparing start to 12 h of exercise and beyond, increased by 10% and 5% in Study 1 and Study 2 respectively. Hence, estimations of energy expenditure from heart rate recordings should be corrected according to this drift.  相似文献   

19.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

20.
In this study, we examined the effects of three recovery intensities on time spent at a high percentage of maximal oxygen uptake (t90[Vdot]O(2max)) during a short intermittent session. Eight endurance-trained male adolescents (16 +/- 1 years) performed four field tests until exhaustion: a graded test to determine maximal oxygen uptake ([Vdot]O(2max); 57.4 +/- 6.1 ml x min(-1) . kg(-1)) and maximal aerobic velocity (17.9 +/- 0.4 km x h(-1)), and three intermittent exercises consisting of repeat 30-s runs at 105% of maximal aerobic velocity alternating with 30 s active recovery at 50% (IE(50)), 67% (IE(67)), and 84% (IE(84)) of maximal aerobic velocity. In absolute values, mean t90[Vdot]O(2max) was not significantly different between IE(50) and IE(67), but both values were significantly longer compared with IE(84). When expressed in relative values (as a percentage of time to exhaustion), mean t90[Vdot]O(2max) was significantly higher during IE(67) than during IE(50). Our results show that both 50% and 67% of maximal aerobic velocity of active recovery induced extensive solicitation of the cardiorespiratory system. Our results suggest that the choice of recovery intensity depends on the exercise objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号