首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The leaderless, prescribed performance consensus problem for groups of agents with antagonistic interactions is addressed for the first time in this paper. We consider agents modeled by pure feedback nonlinear systems with unknown dynamics and an agent communication network described by a signed digraph with a directed spanning tree. A new proportional and integral (PI) variable transformation is proposed that enables the solution of the problem of leaderless bipartite consensus with prescribed performance by recasting it into a regulation problem with prescribed performance, which in turn we solve by a low complexity distributed control law. The algorithm guarantees uniform boundedness of all closed-loop signals and prescribed performance for the bipartite consensus error. Simulations verify the validity of our theoretical analysis.  相似文献   

2.
This paper is concerned with the secure bipartite consensus of second-order multi-agent systems under denial-of-service (DoS) attacks. The communication network is an antagonistic network, in which there is cooperative or competitive relationship between neighboring agents. Meanwhile, information cannot be transmitted when the system is attacked. A novel event-triggered control algorithm based on sampled data is proposed to save limited resources and exclude the Zeno behavior. By applying the convergence of monotone sequences, graph theory as well as the discrete-time Lyapunov function method, some sufficient conditions on threshold parameters, frequency and duration of DoS attacks, and sampling period are derived to ensure the bipartite consensus under DoS attacks. Finally, the correctness and advantages of theoretical results are demonstrated by a numerical simulation.  相似文献   

3.
This paper studies the stochastic leader-following consensus problem of discrete-time nonlinear multi-agent systems (MASs) with multiplicative noises. The measurement information obtained from agents’ neighbors is inevitably affected by communication uncertainties, where the multiplicative noise is one of the important communication uncertainties. Multiplicative noises together with the intrinsic nonlinear dynamics bring more difficulties in the consensus control design under the leader-following topology. To solve the problem, the parameter-dependent Lyapunov functions are constructed to analyze the consensus control of first-order and second-order MASs, respectively. Some sufficient conditions, explicitly related to control gains, intensity of multiplicative noises and the Lipschitz constant regarding nonlinear functions, are established for reaching the mean square (m.s.) and almost sure (a.s.) leader-following consensus. Specifically, the obtained conditions are some scalar inequalities, which are more convenient in engineering application. Numerical simulations are conducted to validate the theoretical results.  相似文献   

4.
We study the consensus control of discrete-time second-order multi-agents systems with time delays and multiplicative noises, where the consensus protocol is designed by both the local relative position measurements and each agent’s absolute velocity. Due to the existence of time delays and multiplicative noises, the classical methods for deterministic models with time delays cannot work. In this paper, we apply stochastic stability theorem of discrete-time stochastic delay equations to find some explicit sufficient conditions for both mean square and almost sure consensus. It is proven that for any given noise intensities and time delays, the second-order multi-agent consensus can be achieved by choosing appropriate control gains in the relative position measurement and absolute velocity, respectively. Numerical simulation is given to demonstrate the effectiveness of the proposed protocols as well as the theoretical results.  相似文献   

5.
In this paper, the leader-following bipartite consensus is investigated for a group of uncertain multiple Euler–Lagrange systems with disturbances. An innovative adaptive distributed observer is developed without requiring that followers surely acquire the leader’s auxiliary state and system matrix. A directed signed network satisfying the principle of structural balance is exploited to describe the interaction among agents. Then a novel bipartite consensus control protocol is proposed to solve the bipartite consensus problem of multiple Euler–Lagrange systems. The theoretical proof is provided via constructing a Lyapunov function and applying Barbalat lemma to analyze the convergence problem. Finally, a numerical simulation is utilized to demonstrate the effectiveness of proposed method.  相似文献   

6.
This paper considers the finite-time bipartite consensus problem governed by linear multiagent systems subject to input saturation under directed interaction topology. Due to the existence of input saturation, the dynamic performance of linear multiagent systems degrades significantly. For the improvement of the dynamic performance of systems, a dynamic gain scheduling control approach is proposed to design a dynamic Laplacian-like feedback controller, which can be obtained from the analytical solution of a parametric Lyapunov equation. Suppose that each agent is asymptotically null controllable with bounded control, and that the corresponding interaction topology of the signed directed graph with a spanning tree is structurally balanced. Then the dynamic Laplacian-like feedback control can ensure that linear multiagent systems will achieve the finite time bipartite consensus. The dynamic gain scheduling control can better improve the bipartite consensus performance of the linear multiagent systems than the static gain scheduling control. Finally, two examples are provided to show the effectiveness of the proposed control design method.  相似文献   

7.
This paper addresses the problem of bipartite output consensus of heterogeneous multi-agent systems over signed graphs. First, under the assumption that the sub-graph describing the communication topology among the agents is connected, a fully distributed protocol is provided to make the heterogeneous agents achieve bipartite output consensus. Then for the case that the topology graph has a directed spanning tree, a novel adaptive consensus protocol is designed, which also avoids using any global information. Each of these two protocols consists of a solution pair of the regulation equation and a homogeneous compensator. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

8.
In this paper, an interventional bipartite consensus problem is considered for a high-order multi-agent system with unknown disturbance dynamics. The interactions among the agents are cooperative and competitive simultaneously and thus the interaction network (just called coopetition network in sequel for simplicity) is conveniently modeled by a signed graph. When the coopetition network is structurally balanced, all the agents are split into two competitive subgroups. An exogenous system (called leader for simplicity) is introduced to intervene the two competitive subgroups such that they can reach a bipartite consensus. The unknown disturbance dynamics are assumed to have linear parametric models. With the help of the notation of a disagreement state variable, decentralized adaptive laws are proposed to estimate the unknown disturbances and a dynamic output-feedback consensus control is designed for each agent in a fully distributed fashion, respectively. The controller design guarantees that the state matrix of the closed-loop system can be an arbitrary predefined Hurwitz matrix. Under the assumption that the coopetition network is structurally balanced and the leader is a root of the spanning tree in an augmented graph, the bipartite consensus and the parameter estimation are analyzed by invoking a common Lyapunov function method when the coopetition network is time-varying according to a piecewise constant switching signal. Finally, simulation results are given to demonstrate the effectiveness of the proposed control strategy.  相似文献   

9.
The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.  相似文献   

10.
The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.  相似文献   

11.
Data transmission via optical fiber is a new discipline of communication theory. The principal difference from conventional baseband data transmission, which is characterized by a signal independent additive Gaussian noise, is the existence of a signal dependent shot noise.This paper presents a technique for estimating the error probability performance of digital systems with inter-symbol interference and signal dependent additive noise. For binary antipodal (±1) systems, the approximate upper bound to the error probability is twice the lower bound. Hence either can be taken as a good approximation to the actual error probability. The technique is then applied to a model of some promising optical data communication systems and a good approximation to the error probability is obtained. Some observations about the effect of various system parameters on the error probability and some numerical examples are presented.  相似文献   

12.
The robust fault estimation problem for linear discrete time-varying (LDTV) systems subject to multiplicative noise is investigated by means of finite impulse response (FIR) filter. A novel analytical redundancy, expressed via all states of the previous time window, is originally established to construct the fault estimator. To ensure the satisfactory fault estimation accuracy in stochastic sense under the interference of random uncertainty, a new performance index in forms of matrix trace function is proposed. An easy-to-check necessary and sufficient condition is presented to obtain the optimal filter gain via minimizing the performance index at each time instant. It is analytically demonstrated that, the newly proposed fault estimation algorithm enjoys obvious computational advantages in updating the filter gain, especially as the length of the time window increases for time-varying systems. Simulation results are finally provided to verify its feasibility and superiority.  相似文献   

13.
In this paper, the event-triggered bipartite consensus problem is investigated for nonlinear multi-agent systems under switching topologies, only part of topologies contain directed spanning tree rooted at the leader. First, a dynamic bipartite compensator is constructed based on relative output information to provide control signal. Then, the time-varying gain method is adopted to propose a compensator-based event-triggered control protocol without Zeno behavior. Notably, the control protocol proposed achieves the bipartite consensus while reducing update frequency effectively. Moreover, a low conservative switching law is designed by the topology-dependent average dwell time strategy, which fully considers the differences among topologies and provides an independent average dwell time for each topology. As an extension, the nonlinear multi-agent systems with non-zero input of leader are further studied. Finally, a practical example is presented to demonstrate the feasibility of proposed control protocol.  相似文献   

14.
This paper studies the leader–follower consensus problem of second-order multi-agent dynamical systems with fixed and stochastic switching topologies in a sampled-data setting. A distributed linear consensus protocol is designed to track an active leader, where the current position information of neighbor agents and self-velocity data are utilized. A necessary and sufficient condition is established under fixed and directed topology for reaching consensus, which depends on the sampling period and control gain parameters. A sufficient condition is obtained under the Markov switching topology case. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

15.
Estimating the parameter of signals is a very important problem in Statistical Signal Processing. In this paper ,we obtain the least squared estimator of frequency of an exponential signal in presence of both multiplicative and additive noise.  相似文献   

16.
邢婧 《科教文汇》2007,(8S):201-201
Estimating the parameter of signals is a very important problem in Statistical Signal Processing. In this paper ,we obtain the least squared estimator of frequency of an exponential signal in presence of both multiplicative and additive noise.  相似文献   

17.
This paper presents a relaxed scheme of fuzzy controller design for continuous-time nonlinear stochastic systems that are constructed by the Takagi–Sugeno (T–S) fuzzy models with multiplicative noises. Through Nonquadratic Lyapunov Functions (NQLF) and Non-Parallel Distributed Compensation (Non-PDC) control law, the less conservative Linear Matrix Inequality (LMI) stabilization conditions on solving fuzzy controllers are derived. Furthermore, in order to study the effects of stochastic behaviors on dynamic systems in real environments, the multiplicative noise term is introduced in the consequent part of fuzzy systems. For decreasing the conservatism of the conventional PDC-based fuzzy control, the NQLF stability synthesis approach is developed in this paper to obtain relaxed stability conditions for T–S fuzzy models with multiplicative noises. Finally, some simulation examples are provided to demonstrate the validity and applicability of the proposed fuzzy controller design approach.  相似文献   

18.
This paper researches the output consensus problem of heterogeneous linear multi-agent systems with cooperative and antagonistic interactions. Two fixed-time state compensator control approaches, one static dynamic and the other distributed adaptive dynamic, are considered for heterogeneous systems subject to logarithmic quantization. Then, a fixed-time output regulation control protocol is constructed to cope with the problem of bipartite output consensus and adaptive fixed-time output consensus of heterogeneous systems which is fully distributed without any global information. Besides, the fully distributed adaptive algorithm is employed to calculate the system matrix of leader and it’s also effectively eliminated the harmful chattering. Finally, two simulations are carried out to testify the feasibility of theoretical results.  相似文献   

19.
In this paper, we consider the quantized consensus problem of multiple discrete-time integrator agents which suffer from input saturation. As agents transmit state information through communication networks with limited bandwidth, the states of agents have to be quantized into a finite number of bits before transmission. To handle this quantized consensus problem, we introduce an internal time-varying saturation function into the controllers of all agents and ensure that the range of the state of each agent can be known in advance by its neighboring agents. Based on such shared state range information, we construct a quantized consensus protocol which implements a finite-bit quantization strategy to all states of agents and can guarantee the achievement of the asymptotic consensus under any given input saturation threshold. Such desired consensus can be guaranteed at as low bit rate as 1 bit per time step for each agent. Moreover, we can place an upper bound on the convergence rate of the consensus error of agents. We further improve that quantized consensus protocol to a robust version whose parameters are determined with only an upper bound on the number of agents and does not require any more global information of the inter-agent network. Simulations are done to confirm the effectiveness of our quantized consensus protocols.  相似文献   

20.
In this paper, we consider a stochastic linear quadratic mean field game for the continuum-parameterized multi-agent systems with multiplicative noise. Based on the Nash certain equivalence principle, we obtain a series of decentralized control laws. Then, Dynkin’s formula and comparison principle are employed to prove the boundedness of the state of the closed loop system in the mean square sense. Finally, we show that the set of decentralized controls has an ?-Nash equilibrium property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号