首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
同学们知道 :垂直且平分一条线段的直线叫做这条线段的垂直平分线。线段垂直平分线定理及其逆定理分别是 :线段垂直平分线上的点到这条线段两个端点的距离相等。到一条线段两个端点的距离相等的点 ,在这条线段的垂直平分线上。求解某些几何证明题时 ,从构造线段垂直平分线入手 ,可简化证明的思维过程 ,捷足先登。例 1 如图 1 ,∠ 1 =∠ 2 ,BC =BD ,求证 :AC =AD证明 :连结CD的交直线AB于E∵BC =BD ,∠ 1 =∠ 2∴BE是CD的垂直平分线∵点A在直线BE上∴AC =AD 例 2 如图 2 ,△ABC中 ,∠ACB =90° ,∠B =6 0° 求证 :AB =2BC …  相似文献   

2.
线段的垂直平分线的性质和它的判定是人教版初中几何第二册中的一节内容。在学习中一般容易被学生忽视,但有些题若能把线段垂直平分线的性质或判定利用上,会使证题过程变得简单巧妙。例1已知:如图,∠1=∠2,BC=BD求证:AD=AC(人教版初二几何复习题三)分析:这个题一般地用三角形全等的方法证明,但如果连结CD,设AB与CD相交于点E,则可以这样证明:因为:∠1=∠2,BC=BD,所以AE是CD的垂直平分线,所以:AC=AD。这样做,既复习了等腰三角形三线合一的性质,又复习了线段垂直平分线的性质一举两得。例2已知:如图,AB=ACDB=DC,AD的延长线交BC…  相似文献   

3.
垂直并且平分一条线段的直线叫做这条线段的垂直平分线.它具有如下重要的特性:线段垂直平分线上的点到这条线段两个端点的距离相等.对于某些图形问题,从线段的垂直平分线入手,巧用其特性,可使解题简易、迅捷!下面从两个方面举例说明,请同学们在体会线段垂直平分线的性质妙用的同时,也要努力学会利用简洁的几何语言书写几何说明饭?一、图形说明问题例1如图1,线段CD垂直平分线段AB,AB平分∠CAD.图1请说明AD∥BC.简析要说明AD∥BC,根据两直线平行的条件,只要说明一对同位角或内错角相等,或两个同旁内角互补即可.解因为CD垂直平分AB…  相似文献   

4.
在证角相等或线段相等时,同学们总习惯利用全等三角形.但对于含有线段垂直平分线的题目,直接利用线面垂直平分线的性质去证,比利用三角形全等要简单得多.请看例子. 例1 已知C、D是线段AB的垂直平分线上的点.求证:∠CAD=∠CBD.  相似文献   

5.
<正>一、问题呈现题目如图1所示,在△ABC中,AB=6,AC=3,∠BAC=120°,∠BAC的平分线交BC于点D,求AD的长.二、解法新探及思考解法1如图1,过点D作DE∥AB交AC于点E,则∠EDA=∠BAD.∵AD平分∠BAC,∠BAC=120°,∴∠EAD=∠BAD=∠EDA=60°,故△ADE是正三角形,DE=EA=AD.由DE∥AB,  相似文献   

6.
我们把三角形一个角的顶点与对边上一点的连线叫做三角形的角分线 .角分线有如下性质 :定理 三角形角分线分对边的比等于两邻边与其相应分角正弦积的比 .下面给出该定理的证明 .已知 :如图 1 ,D点在△ ABC的 BC边上 ,AD为∠ A的角分线 .求证 :BDDC=ABsin∠ BADACsin∠ CAD.图 1证明 :过 B、C向角分线AD所在直线作垂线 ,E、F为垂足 ,则 BE =BAsin∠ BAD,CF =ACsin∠ CAD.因为∠ BED =∠ CFD= Rt∠ ,∠ BDE =∠ CDF,所以△ BED∽△ CFD.所以 BDDC=BECF=sin∠ BADACsin∠ CAD.很明显 ,当角分线分成等角时 ,si…  相似文献   

7.
三角形的一个有趣性质   总被引:1,自引:1,他引:0  
定理:在△ABC内三点D、E、F满足∠BAE=∠CAF,∠ABD=∠CBF,且AD、BE、CF三线共点P,则∠ACD=∠BCE.反之,若∠ACD=∠BCE,则AD、BE、CF三线共点  相似文献   

8.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

9.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

10.
对于某些几何证明问题 ,同学们可以从线段垂直平分线入手 ,常可找到解决问题的捷径。一、直接利用已知的线段垂直平分线图 1.例 1 如图 1,AD平分∠BAC ,EF是AD的垂直平分线交AD于E ,交BC的延长线于F ,连AF ,求证 :∠B =∠CAF证明 :∵EF是AD的垂直平分线∴FA =FD ∠FDE =∠FAE∴∠B +∠ 1=∠CAF +∠ 2∵∠ 1=∠ 2∴∠B =∠CAF .二、挖掘利用隐含的线段垂直平分线例 2 如图 2 ,△ABC中 ,AD平分∠BAC ,CE⊥AD于O ,CE是∠DEF的平分线 ,求证EF∥BC .图 2证明 :在△AEO和…  相似文献   

11.
在解圆的有关问题时,若能巧妙地作出圆的直径,将能获得简捷的解题思路,现举数例如下.例1(2005年宁波市)如图1,△ABC内接于⊙O,∠B=30°,AC=2cm.⊙O的半径为.解:连AO且延长交⊙O于D,连CD,则∠ACD=90°,∠D=∠B=30°,所以AD=2AC=2×2=4,所以⊙O的半径为2cm.例2(2005年自贡市)如图2,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠BAP=∠C.求证:PA是⊙O的切线.证明:作⊙O的直径AD,连BD,则∠C=∠D,∠ABD=90°,即∠D+∠BAD=90°,所以∠C+∠BAD=90°.因为∠C=∠PAB,所以∠BAD+∠PAB=90°,即AP⊥AD,所以PA为⊙O的切线.例3(…  相似文献   

12.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

13.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

14.
角平分线与线段垂直平分线是一对好朋友,它们常常携手出击,并肩作战,威力巨大,可以轻松搞定许多疑难问题.下面我们一起欣赏"两线"的精彩演出.一、合力解决计算问题例1如图1,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.  相似文献   

15.
在证角相等或线段相等时,总习惯利用全等三角形,但对于含有线段垂直平分线的题目,直接利用线段垂直平分线的性质来证,比利用三角形全等要简单得多,请看下面的例子. 例1 在等边△ABC中,∠B和∠C的平分线相交于O,BO、OC的中垂线分别交BC于E和F.求  相似文献   

16.
华师大版初一年级(七年级)数学课本下册第53页有一幅如图1所示的四边形.对于这一基本图形,我们有如下结论: 如图1,在凹四边形ABDC中,∠BDC=∠A ∠B ∠C. 探索这一结论成立的方法很多,现给出两种常见方法: 方法一:连结AD并延长至E,则有∠BDE=∠BAD  相似文献   

17.
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称"三线合一".它包括三个方面的内容:如图1,△ABC中,AB=AC,D是BC上的一点.(1)若∠1=∠2,那么AD⊥BC,BD=CD;(2)若AD⊥BC,那么BD=CD,∠1=∠2;(3)若BD=CD,那么∠1=∠2,AD⊥BC.一、"三线合一"反映了等腰三角形的重要性质一轴对称性  相似文献   

18.
三角形三条高相交于一点,这点称为三角形的垂心。由此可得:△ABC任意两条高线AD、BE相交于H,则CH⊥AB。运用这个性质,可巧妙地解决一些几何问题。例1 CD是Rt△ABC斜边上的高,∠BAC的平分线AE交CD于H,交∠BCD的平分线CF于G,求证:FH∥BC。本题一般的证明思路是利用三角形的内角平分线的性质定理,得出DH∶HC=DF∶FB,推出HF∥BC。如果本题采用垂心性质来解,则别有味道,不失巧妙。证明:由AC⊥BC、CD⊥AB,得∠CAD=∠DCB,又因为∠DAH=∠CAH,∠DCF=∠BCF,因此,∠DCF=∠DAH,又∠ADH=Rt∠,得∠A…  相似文献   

19.
同学们在学习几何时,若能借助某些直线、射线(如角平分线、垂线)为对称轴构造对称图形,便会给解题带来极大方便,下面介绍这类几何题的思路及方法。一、以角平分线为对称轴构造图形图1例1已知,如图1,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,求证:CE=21BD.分析:因为角是轴对称图形,角平分线是对称轴,故根据对称性作出辅助线,不难发现CE=21CF,再证明BD=CF即可。证明:延长CE和BA交于点F∵∠1=∠2BE=BE∠BEC=∠BEF∴△BEC≌△BEF∴CE=EF=21CF∴∠1+∠F=∠3+∠F=90°∴∠1=∠3又∵AB=AC,∠BAD=∠CAF∴△ABD…  相似文献   

20.
线段的垂直平分线(中垂线)的性质定理及其逆定理在解题中有着广泛的应用,现举例说明,供同学们参考.一、用于求线段长例1如图1,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于D、E.若AB=14,△BCD的周长为22,求BC的长.分析:由DE是AC的垂直平分线,得DA=DC.则BD+DC=BD+DA=AB=14.又BC+BD+DC=22,故BC=22-(BD+DC)=22-14=8.(具体证明过程请读者自行完成,下同)二、用于求角的度数例2如图2,AB⊥CD于B,AD的垂直平分线CF分别交AB、AD于E、F,EB=EF,求∠A的度数.分析:由CF是AD的垂直平分线想到连结DE,则AE=DE,故∠A=∠1…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号