首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>题目:(2009年高考山东理科第20题)等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图像上.(1)求r的值;(2)当b=2时,记bn=2(log2an+1)(n∈N+),证明:对任  相似文献   

2.
<正>利用数学归纳法证明不等式的关键是数学归纳法的第二步,而解决这一步的方法有放缩法与分析法。下面通过一道高考数学题的解答来说明这两种方法的运用。例题等比数列{a_n}的前n项和为Sn,已知对任意的n∈N_+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图像上。(1)求r的值;(2)当b=2时,记bn=2(log_2a_n+1)(n∈N+),证明:对任意的n∈N_+,不等式  相似文献   

3.
(2012年高考江苏卷第20题)已知各项均为正数的两个数列{an}和{bn}满足:an+1=an+bn/a2n+b2n,n∈N*.(1)设bn+1=1+bn/an,n∈N*,求证数列{(bn/an)2}是等差数列;(2)设bn+1=2·bn/an,n∈N*,且{an}是等比数  相似文献   

4.
形如an=f(n)×qn(其中f(n)是关于n的多项式)的数列可用错位相减法求和,但f(n)的次数较高时用错位相减法比较麻烦.下面就来探讨拆项在相关数列问题中的应用. 一、拆项在数列求和中的应用 1.可行性分析 如果能找到一个数列{bn},使得an =bn+1-bn,那么数列{an}的前n项和Sn=a1 +a2+…+an=(b2-b1)+(b3-b2)+…+(bn+1-b1)一般地,当an=bn+k-bn或an=bn-bn+k(其中n∈N+,k∈N+,且k为常数)时,都可快速求和.  相似文献   

5.
1.分组某此既非等差,又非等比的数列,可拆开为等差数列、等比数列或常见的数列,分别求和. 例1 数列{an}的前n项和Sn=2an-1,数列{bn}满足b1=3,bn+1=an+bn(n∈N*). (1)证明数列{an}为等比数列; (2)求数列{bn}的前n项和Tn. 解(1)由Sn=2an-1,n∈N*,所以  相似文献   

6.
周先育老师在文[1]提出猜想: 设a,b,c,d>0,且满足a+b+c+d=1,则an/1+an+bn/1+bn+cn/1+cn+dn/1+dn<1/1+anbncndn,n∈N+(1) 王利华老师通过文[2]给出不等式(1)的最佳加强.  相似文献   

7.
09年山东高考理科数学的第20题如下: 等比数列{an}的前n项和为Sn,已知对任意的n∈N,点(n,Sn)均在函数y=bn+r(b〉0且b≠1,b,r均为常数)的图像上.  相似文献   

8.
<正>前不久,笔者听了一节等差数列的复习课.有这样一道例题:已知两个等差数列{an}、{bn}的前n项和分别为Sn、Tn,对任意n∈N*,都有Sn/Tn=2n/3n+1,求a5/b5的值.  相似文献   

9.
已知函数f(x)=x^2+ax+b的零点与函数g(x)=2x^2+4x-30的零点相同.数列{an},{bn}定义为:a1=1/2,2an+1=f(an)+15,bn=1/2+an(n∈N°).(1)求实数a,b的值;(2)若将数列{bn}的前n项和与前n项积分别记为Sn,Tn证明:对任意正整数n,2^n+1Tn+Sn为定值;  相似文献   

10.
1.由以下条件分别给出数列{an}:(1){2ab}是等比数列;(2)Sn=n2 1;(3){ban},是等差数列;(4)an=2/n-1(a1 a2 … an-1)(n≥2).求满足以上条件且使{ban}是等差数列的命题的个数.2.数列{an}中,a1=8,a4=2且满足an 2=2an 1-an,n∈N .设bn=1/n(12-an)(n∈N ),Tn=b1 b2 … bn(n  相似文献   

11.
<正>【2009年普通高等学校招生全国统一考试(山东卷,理科数学)第20题】等比数列{a n}的前n项和为S n,已知对任意的n∈N+,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图像上.(1)求r的值;(2)当b=2时,记b n=2(log2a n+1)(n∈N+),  相似文献   

12.
由于等差数列运算的灵活性与技巧性较强,因此要学会借用等差数列的性质解题,以达到选择捷径,避繁就简,合理解题. 一、若数列{an}为公差不为零的等差数列,则其前n项和Sn必为n的不含常数项的二次函数,亦即Sn=an2+bn(a≠0). 例1 设Sn和Tn为等差数列{an}与{bn}的前n项和,对任何自然数,n∈N ,都有Sn:Tn=(7n+1):(4n+27),求a11/b11的值.  相似文献   

13.
<正>题目(2013年山东高考题)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且Tn+an+1/2n=λ(λ为常数),令cn=b2n(n∈N*),求数列{cn}的前n项和Rn.  相似文献   

14.
<正>《数学通报》2014年9月号问题2201如下:问题2201[1]已知a、b、c∈R+,且满足a2/1+a2+b2/1+b2+c2/1+c2=1,求证:abc≤2/4.本文从变元的个数与指数出发,利用均值不等式给出上述条件不等式的一个推广.推广已知n∈N+,n≥2,k∈N+,ai∈n  相似文献   

15.
例题1(%2009年山东理科卷)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+(rb>0且b≠1,b,r均为常数)的图像上.  相似文献   

16.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

17.
文[1]有这样两个不等式: 若a, b∈R+, a+b=1, 则 4/3≤1/(a+1)+1/(b+1)<3/2,(1) 3/2<1/(a2+1)+1/(b2+1)≤8/5.(2) 文[2]建立了如下两个新不等式: 若a, b∈R+, a+b=1,则 3)/2<1/(a3+1)+1/(b3+1)≤16/9,(3) 1)/(an+1)+1/(bn+1)>3/2.(4) 且在文末提出如下猜想:  相似文献   

18.
掌握判定等比数列的方法 ,目的是深刻理解等比数列的基本概念 ,熟练应用有关知识 ,为解等比数列综合题奠定良好的基础 .具体判定方法如下 :一、定义法 (又叫递推公式法 )如果一个数列 {an}满足an+ 1 an=q(常数 ) ,则这个数列叫做等比数列 .由此定义可判定等比数列 .例 1 已知数列 {an}中a1 =1,Sn + 1 =4an+ 2 (n∈N ) ,bn=an+ 1 -2an,求证 :数列{bn}是等比数列 .证明 ∵a1 =1,Sn+ 1 =4an+ 2 ,∴ a2 =S2 -S1 =S2 -a1=(4a1 + 2 ) -a1 =5 .又∵bn =an+ 1 -2an,∴ b1 =a2 -2a1 =5 -2 =3 .∵an+ 1 =Sn+ 1 -Sn=(4an+ 2 ) -(4an- 1 + 2 )=4…  相似文献   

19.
由两个数列{an}与{bn}所组成的递推式求其通项公式通常较为困难,在文[1]中作者给出了一道题的解如下:若数列{an}与{bn}满足a0=1,b0=0,且an+1=7an+6bn-3bn+1=9an+7bn-4(n∈N),试证an(n∈N)是完全平方数.导析:由初始条件和已知递推式,易求出a1=4,b1=4,且当n≥1时,(2an+1-1)+3bn+1=(14an+12bn-7)+3(8an+7bn-4)=(7+43)[(2an-1)+3bn]累次迭代,便得(2an-1)+3bn=(7+43)n-1[(2a1-1)+3b1]=(7+43)n请注意:这里是否有等比数列的模型呢?同样,我们还可建立上式的对偶式:(2an-1)-3bn=(7-43)n于是,将所得二式相加,得an=14(7+43)n+14(7-43)n+12因为7±43=(2…  相似文献   

20.
如下三道高考题有着较深的渊源: 题目1数列{bn}是等差数列,b1=1,b1+b2+…+b10=100,(Ⅰ)略;(Ⅱ)设数列{an}的通项an=lg(1+1/bn),记Sn是数列{an}前n项和,比较Sn与1/2lgbn+1的大小,并证明之.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号