首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
同学们在学习二次根式时,常会犯一些错误,现举例说明,供同学们参考. 1.化简x3+2x2y+xy2√. 错解:原式=x(x+y)2√=x+yx√. 分析:答案中根号外的x+y是一个整体,必须加括号. 正解:原式=x(x+y)2√=(x+y)x√. 2.把式子x-1x√中根号外的因式适当变形后移到根号内,并使原式的值不变. 错解:原式=x2√·-1x√=-x√. 分析:由公式a=a2√(a≥0)知,根号外的负因式要移进根号内且保持原式的值不变时,需在根号外添加一负号.如-4=-(-4)2√. 正解:由题意可知-1x>0,∴x<0. ∴原式=--x-1x√=-(-x2-1x √=--x√. 3.计算2√÷3√…  相似文献   

2.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

3.
《时代数学学习》2004,(10):41-46
一、方程1.① (灵武市 )解方程x2 +2x - 3=0 .  ② (芜湖市 )已知方程 3x2 - 9x+m =0 的一个根是 1,则m的值是     .③ (潍坊市 )方程 1x- 1- 1x+1=1的解是     .2 .(海口市 )把分式方程 1x- 2 - 1-x2 -x =1的两边同时乘以(x - 2 ) ,约去分母 ,得 (   ) .                   (A) 1- (1-x) =1(B) 1+(1-x) =1(C) 1- (1-x) =x - 2 (D) 1+(1-x) =x - 23.(青岛市 )用换元法解方程x2 +x +1=2x2 +x 时 ,若设x2 +x =y ,则原方程可化为 (   ) .(A)y2 +y+2 =0 (B)y2 -y - 2 =0(C)y2 -y +2 =0 (D)y2 +y - 2 =04 .…  相似文献   

4.
阅读理解能力是初中数学课程追求的重要目标之一.本文特选了几例与方程有关的阅读理解题,供参考.一、阅读解题过程,总结思想方法例1阅读下面的材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2.原方程化为y2-5y+4=0①.解得y1=1,y2=4.当y=1时,x2-1=1,∴x=±2;当y=4时,x2-1=4,∴x=±5.∴原方程的解为x1=2,x2=-2,x3=5,x4=-5.解答问题:(1)填空:在由方程得到①y2-5y+4=0的过程中,利用法达到了降次的目的,体现了的数学思想.(2)解方程(x2-x)2-4(x2-x)-12=0,若设y=x2-x,则原方程可化为.解(1)换元:转化;(2)y2…  相似文献   

5.
1.用倒数换元例1 解方程x2-x-12/x2-x-4=0. (2001年哈尔滨中考) 解设x2-x=y,则12/x2-x=12/y,于是原方程化为 y-12/y-4=0,变形得 y2-4y-12=0,解得 y1=6,y2=-2, 当y1=6,即x2-x-6=0时,解得 x1=3,x2=-2; 当y2=-2时,即x2-x+2=0时,△<0,此方程无实数根.  相似文献   

6.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

7.
在数学竞赛中,有些复杂的或具有某种特殊结构的方程用常规方法求解较繁难,但运用增元法可达到化繁为简,快速求解的目的.本文略举几例予以说明.1解整式方程例1解方程x=(x2+3x-2)2+3(x2+3x-2)-2.(1996年四川省初中数学竞赛试题)分析若去括号,会得到一元四次方程,对初中学生来说求解实非容易,故不可取.若注意到括号内整体特征,设y=x2+3x-2,从而将一元方程转化为二元二次方程组,易解.解设y=x2+3x-2,则有x=y2+3y-2,(1)y=x2+3x-2.(2)(1)-(2)得(x-y)(x+y+4)=0.当x=y时,由(2)解得x1,2=-1±3;当x+y+4=0时,将y=-(x+4)代入(2),解得x3,4=-2±2.2解分式方…  相似文献   

8.
每年的中考与竞赛都有代数式求值这类题,并且这些题的解法各异,灵活多样.解这类题,若能抓住题目的特点,巧妙代入,就可达到事半功倍的效果.一、直接代入求值例1已知x=2-3√,求2-x(7+43√)x2-(2+3√)x+3√的值.解:把x=2-3√代入,得原式=2-(2-3√)(7+43√)(2-3√)2-(2+3√)(2-3√)+3√=3√(7+43√)(7-43√)-(2+3√)(2-3√)+3√=3√1-1+3√=1.二、先化简,后代入求值例2已知x=2√+2,求x3x-1-x2-x-1的值.解:原式=x3-(x-1)(x2+x+1)x-1=x3-(x3-1)x-1=1x-1.当x=2√+2时,原式=12√+2-1=12√+1=2√-1.三、先代值,后化简求值例3已知x=3√,y=2,那么代数式…  相似文献   

9.
在初中代数的习题中 ,常会遇到一些特殊的高次方程 ,如用常规方法来解 ,过程一般较为繁琐 ,且容易出错。现例举出来 ,供同学们参考。一、中值变换例 1 解方程 :x4+ (x - 2 ) 4 =82 .分析 :直接展开较繁 ,取x与 (x - 2 )的算术平均数设为 y ,进行中值变换。解 :令x - 1 =y ,则原方程变为 :( y + 1 ) 4 + ( y - 1 ) 4 =82展开合并得2 y4+ 1 2 y2 + 2 =82 即 y4+ 6y2 - 40 =0∴ ( y2 + 1 0 ) ( y2 - 4) =0∴y2 =- 1 0 (舍去 ) ,y2 =4 ∴y =± 2∴x - 1 =± 2 ∴x1 =3 x2 =- 1二、倒数变换例 2 解方程 :x4- 3x3- 2x2 - 3x + 1 =0 .分析 :…  相似文献   

10.
一、换元法例1 解方程2x4+3x3-16x2+3x+2= 0. 解析:这是一个一元高次方程,观察方程各项系数的特点,可发现方程中各项系数关于中间项是对称的,且x≠0,因此,给方程两边同除以x2,得2(x2+1/x2)+3(x+1/x)-16=0. 令x+1/x=y,,则x2+1/x2=y2,即得2y2+3y-20=0, 解得:y1=5/2,y2=-4. 代入令式得:x1=2,x2=1/2,  相似文献   

11.
<正>在初中数学教材中先后出现了可化为一元一次方程的分式方程和可化为一元二次方程的分式方程的相关问题.其中,让学生一直感到困惑的是与增根有关的问题.下面就常见的几种情况加以分析.题型一、解分式方程例1(2008南京中考)解方程:2/x+1-x/x~2-1=0.错解方程两边同乘(x-1)(x+1),得2(x-1)-x=0.解这个方程,得x=2.所以,x=2是原方程的解.  相似文献   

12.
国际数学大师陈省身称“方程是好的数学”,这充分说明方程在数学中的作用和地位.解方程的本质是揭示根与系数的关系.本文介绍一元二次方程根的常见、基本变换,看一看当方程的根作某种变换时,方程的系数会有怎样的相应变化.一、倍根变换例1以方程x2-2x-5=0的两根的10倍为两根,请写出新方程.解1设原方程的两根为x1,x2,则x1+x2=2,x1·x2=-5.记新方程两根为y1,y2,而y1=10x1,y2=10x2,所以y1+y2=10(x1+x2)=20,y1·y2=100(x1x2)=-500.因此,所求新方程为y2-20y-500=0.解2由y=10x,得x=1y0,以此代入原方程得(y10)2-2(y10)-5=0,即y2-20y-500=0.显然,解2…  相似文献   

13.
【例1】解方程:1-41-x=5x--4x【错解】方程两边都乘以x-4,得1 1=5-x解得x=3【剖析】上述解答错误的原因有两点:一是去分母时没有把单独的整式1作为一项,乘以公分母x-4;二是忘记了“解分式方程必须检验”的要求.【正解】方程两边都乘以公分母x-4,得x-4 1=5-x解得x=4检验:当x=4时  相似文献   

14.
在解某些含括号的高次方程时 ,有的同学常常见到括号就去掉 ,总习惯于将方程中的多项式按降幂排好后再设法求解 .岂不知 ,这样的“习惯”处理有时易造成简题繁解 .例 解方程 :(x2 -x -3 ) 2 -(x2 -x -3 ) =x +3 .解法 1:由原方程得(x4+x2 +9-2x3 -6x2 +6x) -(x2 -x -3 )=x +3 .去括号 ,整理得x4-2x3 -6x2 +6x +9=0 .拆项为x4-2x3 -3x2 -3x2 +6x +9=0 .则 (x2 -2x -3 ) (x2 -3 ) =0 .解得x1 =-1,x2 =3 ,x3 =3 ,x4=-3 .小结 :解法 1及其结果无疑都是正确的 ,但其求解过程较繁琐 ,尤其是其求解过程中的“拆项”有一定的难度 ,一些同学往往不能…  相似文献   

15.
初中《代数》第三册P.115例5是:已知方程x~2-2x-1=0,利用根与系数关系求一个一元二次方程,使它的根是原方程的各根的立方。其实,本题若不利用根与系数的关系,也可获解,请看: 解:设y为新方程任一根,则对原方程相应的根x有:y=x~3。由原方程得:X~2=2x+1,所以x~3=2x~2+x=2(2x-1)+x=5x+2。因此,y=5x+2,即x=(y-2)/5,将它代入原方程并化简即得所求方程:y~2-14y-1=0。  相似文献   

16.
众所周知 ,“根与系数的关系”的应用之一是构造方程 ,但它不是构造方程的惟一方法 ,本文举例介绍构造方程的另两种方法 ,供同学们参考。例 1 求作一方程 ,使它的各根分别是方程x2 - 3x + 2 =0的各根的 3倍。解法一 :设所求方程的未知数为 y。由题意 ,得 y =3x ,即x =y3,代入原方程 ,得 ( y3) 2 - 3·y3+ 2 =0整理 ,得 y2 - 9y + 1 8=0 .解法二 :设所求方程为 y2 + py + q =0 ,由题意 ,得 y =3x ,∴ ( 3x) 2 + 3px + q =0 ,即 9x2 + 3px + q =0 .此方程与原方程是同解方程 ,∴19=- 33p =2q,∴p =- 9,q =1 8.则所求作方程为 y2 - 9y + 1 8=0…  相似文献   

17.
倒数方程是一种特殊的高次方程,它有四种基本类型,每种类型都有常规的解法。本文就从四个方面对这个问题作以综述。一、第一类型的偶次倒数方程的解法例1、解方程x~4+7x~3+14x~2+7x+1=0解:显然x=0不是方程的根,两边同除以x~2,得(x~2+(1/x~2))+7(x+(1/x))+14=0令x+(1/x)=y,测x~2+(1/x~2)=y~2-2测有y~2+7y+12=0(y+3)(y+4)=0∴y=3或y=4当x+(1/x)=-3时,x~2+3x+1=0  相似文献   

18.
在一元一次方程的求解过程中,一些初学者由于忽视了变形前后的同解性,常会出现这样那样的错误.现就几类比较常见的病例,简要分析如下.一、解题格式不对致错例1解方程5x-2=3x 4.错解:5x-3x=4 2=2x=6=x=3.评析:这里混淆了方程的同解变形和代数式的恒等变形,解方程进行同解变形时不能用等号连等.二、移项不变号致错例2解方程5x 1=3x 7.错解:5x 3x=7 1.解得:x=1.评析:移项法则掌握不牢,方程中的项从等式的一端移到另一端时,一定要改变原来的符号.三、去括号忘记法则致错例3解方程5x-2(8-x)=6x-3(4-x).错解:5x-16-x=6x-12-x.移项、合并同类项,得-…  相似文献   

19.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

20.
初中数学试题常常有解方程(组)的类型,这类方程通常含有根式或分式。若平方去根号或去分母都会产生高次方程,很难解决。对这类方程,一定要认真观察,看看有没有一元二次方程的背景,然后用换元法来解。今以全国各地初中毕业、升学考试数学试题为例来说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号