首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The current study compared cold-water immersion (CWI) and active recovery (AR) to static stretching (SS) on muscle recovery post-competitive soccer matches in elite youth players (n = 15). In a controlled crossover design, participants played a total of nine competitive soccer games, comprising three 80 minute games for each intervention (SS, CWI and AR). Muscle oedema, creatine kinase (CK), countermovement jump performance (CMJA) and perceived muscle soreness (PMS) were assessed pre-, immediately post-, and 48 hours post-match and compared across time-intervals and between interventions. Following SS, all markers of muscle damage remained significantly elevated (P < 0.05) compared to baseline at 48 hours post-match. Following AR and CWI, CMJA returned to baseline at 48 hours post-match, whilst CK returned to baseline following CWI at 48 hours post-match only. Analysis between recovery interventions revealed a significant improvement in PMS (P < 0.05) at 48 hours post-match when comparing AR and CWI to SS, with no significant differences between AR and CWI observed (P > 0.05). Analysis of %change for CK and CMJA revealed significant improvements for AR and CWI compared to SS. The present study indicated both AR and CWI are beneficial recovery interventions for elite young soccer players following competitive soccer matches, of which were superior to SS.  相似文献   

2.
ABSTRACT

The aims of this study were (i) to examine the sedentary time (ST) during different time periods [i.e., weekend, out-of-school weekdays hours, school hours, recess, physical education classes (PEC)] in children and adolescents; (ii) to identify 2-year longitudinal changes in the ST for these periods; and (iii) to examine if ST at baseline is associated with ST 2 years later. This was a 2-year follow-up study with 826 (51.9% boys) children and 678 (50.7% boys) adolescents. Accelerometers were used to assess ST. Students spent more than 60% of their weekend, out-of-school hours and school hours in ST. During these periods, girls and adolescents were more sedentary than boys and children, respectively (p < 0.05). Over 2-year follow-up, ST increased during the weekend, out-of-school hours, school hours and recess in all subgroups studied (p < 0.001). ST during PEC declined 2% per year in children (p < 0.001) but it increased in adolescents (p < 0.05). ST during the periods analysed at baseline was lowly associated with ST during these periods 2 years later (intraclass correlations from <0.001 to 0.364). Interventions in these settings may be adequate if the intention is to avoid ST increase in students.  相似文献   

3.
This study investigated (i) the prevalence of hypohydration and (ii) association between urinary indices of hydration status and confounding factors (e.g., urine protein content, water intake) in elite youth boxers during their weight-stable phase before competition. Sixteen national champion boxers (all male, 17 ± 1 y) were measured on 3 occasions (baseline, day 3, day 10), 30-day prior to competition. Body mass, total body water, urine specific gravity (USG), osmolality (UOSM) and total protein content (TPC) were evaluated to determine hydration status and fluid balance. Overall macronutrient and water intake were assessed using dietary records. Both UOSM and USG increased from day 3 to day 10 by 16% and 0.4% (P < 0.001), despite athletes being in their weight-stability period, and regardless of ad libitum fluid intake. Hypohydration was universally prevalent among all athletes on both test days with USG: 1.027 ± 0.003 g · mL?1 and UOSM: 1035 ± 108 mOsmol · kg?1. An inverse association between mean UOSM values and mean water intake was observed (R = ?0.52, P = 0.04), while TPC was not associated with any urinary dehydration markers (USG, P = 0.51; UOSM, P = 0.61). The present outcomes find that the most prevalent urinary dehydration markers used to classify hydration status in competition exhibit large variability, even during weight-stable periods.  相似文献   

4.
This study examined the test-retest reliability of near-infrared spectroscopy (NIRS), laser Doppler flowmetry (LDF) and Doppler ultrasound to assess exercise-induced haemodynamics. Nine men completed two identical trials consisting of 25-min submaximal cycling at first ventilatory threshold followed by repeated 30-s bouts of high-intensity (90% of peak power) cycling in 32.8 ± 0.4°C and 32 ± 5% relative humidity (RH). NIRS (tissue oxygenation index [TOI] and total haemoglobin [tHb]) and LDF (perfusion units [PU]) signals were monitored continuously during exercise, and leg blood flow was assessed by Doppler ultrasound at baseline and after exercise. Cutaneous vascular conductance (CVC; PU/mean arterial pressure (MAP)) was expressed as the percentage change from baseline (%CVCBL). Coefficients of variation (CVs) as indicators of absolute reliability were 18.7–28.4%, 20.2–33.1%, 42.5–59.8%, 7.8–12.4% and 22.2–30.3% for PU, CVC, %CVCBL, TOI and tHb, respectively. CVs for these variables improved as exercise continued beyond 10 min. CVs for baseline and post-exercise leg blood flow were 17.8% and 10.5%, respectively. CVs for PU, tHb (r2 = 0.062) and TOI (r2 = 0.002) were not correlated (P > 0.05). Most variables demonstrated CVs lower than the expected changes (35%) induced by training or heat stress; however, minimum of 10 min exercise is recommended for more reliable measurements.  相似文献   

5.
6.
Eccentric contractions that provide spring energy can also cause muscle damage. The aim of this study was to explore leg and vertical stiffness following muscle damage induced by an eccentric exercise protocol. Twenty active males completed 60 minutes of backward-walking on a treadmill at 0.67 m/s and a gradient of ? 8.5° to induce muscle damage. Tests were performed immediately before; immediately post; and 24, 48, and 168 hours post eccentric exercise. Tests included running at 3.35 m/s and hopping at 2.2 Hz using single- and double-legged actions. Leg and vertical stiffness were measured from kinetic and kinematic data, and electromyography (EMG) of five muscles of the preferred limb were recorded during hopping. Increases in pain scores (over 37%) occurred post-exercise and 24 and 48 hours later (p < 0.001). A 7% decrease in maximal voluntary contraction occurred immediately post-exercise (p = 0.019). Changes in knee kinematics during single-legged hopping were observed 168 hours post (p < 0.05). No significant changes were observed in EMG, creatine kinase activity, leg, or vertical stiffness. Results indicate that knee mechanics may be altered to maintain consistent levels of leg and vertical stiffness when eccentric exercise-induced muscle damage is present in the lower legs.  相似文献   

7.
Abstract

Thermoneutral water immersion increases cardiac preload and changes the neuroendocrine settings of blood volume regulation. The resulting marked diuresis may lead to significant haemodynamic changes after the end of a prolonged water immersion. Ten volunteers underwent 6 h of complete thermoneutral water immersion. Changes in cardiovascular status were assessed 1 h and 16 h after water immersion. Haemodynamic changes were assessed by Doppler echocardiography. Arterial wall distensibility was estimated by pulse wave velocity analysis. One hour after water immersion, mean weight loss was 1.78 kg and urine volume amounted to 1.5 litres. Echocardiographic measurements evidenced a significant decrease in dimensions of the left cardiac chambers and inferior vena cava. The decreased cardiac preload was paralleled by a lower stroke volume and cardiac output. A peripheral vasoconstriction associated with a relative decrease in the lower limb blood flow was evidenced by an increase in carotid-pedal pulse wave velocity and by a decrease in ankle brachial index. Sixteen hours after water immersion, cardiac preload and cardiac output remained below baseline values and peripheral vascular tone was still higher than at baseline. Marked haemodynamic changes had not returned to baseline 16 h after water immersion. There is a need to design fluid-replacement protocols to improve this recovery.  相似文献   

8.
There is limited and inconclusive evidence surrounding the physiological and perceptual responses to heat stress while sleep deprived, especially for females. This study aimed to quantify the effect of 24 h sleep deprivation on physiological strain and perceptual markers of heat-related illness in females. Nine females completed two 30-min heat stress tests (HST) separated by 48 h in 39°C, 41% relative humidity at a metabolic heat production of 10 W · kg?1. The non-sleep deprived HST was followed by the sleep deprivation (SDHST) trial for all participants during the follicular phase of the menstrual cycle. Physiological and perceptual measures were recorded at 5 min intervals during the HSTs. On the cessation of the HSTs, heat illness symptom index (HISI) was completed. HISI scores increased after sleep deprivation by 28 ± 16 versus 20 ± 16 (P = 0.01). Peak (39.40 ± 0.35°C vs. 39.35 ± 0.33°C) and change in rectal temperature (1.91 ± 0.21 vs. 1.93 ± 0.34°C), and whole body sweat rate (1.08 ± 0.31 vs. 1.15 ± 0.36 L · h?1) did not differ (P > 0.05) between tests. No difference was observed in peak, nor rise in: heart rate, mean skin temperature, perceived exertion or thermal sensation during the HSTs. Twenty-four hours sleep deprivation increased perceptual symptoms associated with heat-related illness; however, no thermoregulatory alterations were observed.  相似文献   

9.
This study examined the time course of mean self-esteem and physical self scores in three groups: male endurance athletes treated with recombinant human erythropoietin (rHuEPO group, n = 6), a placebo group (n = 5) injected with a sodium chloride solution and a control group who did not receive any injection (n = 6). Each participant completed the Physical Self Inventory twice a day (between 07.00 and 09.00 h and between 19.00 and 21.00 h). Using a 10 cm visual analog scale, the participants assessed global self-esteem, physical self-worth and the sub-domains of physical condition, sport competence, attractive body and physical strength (Fox & Corbin, 1989). This was conducted over three consecutive periods: in the 2 weeks before the course of injections, during the 6 weeks of injections and for 4 weeks after the injections. Aerobic capacity was assessed before and after 4 weeks of treatment. The results showed a significant increase in aerobic physical fitness in the rHuEPO group and a significant increase in perceived physical condition and physical strength scores at the end of treatment. The main psychological result was that endurance athletes were highly sensitive to the effects of rHuEPO on physical fitness. The perception of increased physical condition may lead to a stronger commitment to training. The rHuEPO injections presented a dangerous hedonic effect linked to endurance training. These results confirm the need to tackle rHuEPO abuse at any time during the training season.  相似文献   

10.
The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72–96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.  相似文献   

11.
We investigated the oxygen-conserving potential of the human diving response by comparing trained breath-hold divers (BHDs) to non-divers (NDs) during simulated dynamic breath-holding (BH). Changes in haemodynamics [heart rate (HR), stroke volume (SV), cardiac output (CO)] and peripheral muscle oxygenation [oxyhaemoglobin ([HbO2]), deoxyhaemoglobin ([HHb]), total haemoglobin ([tHb]), tissue saturation index (TSI)] and peripheral oxygen saturation (SpO2) were continuously recorded during simulated dynamic BH. BHDs showed a breaking point in HR kinetics at mid-BH immediately preceding a more pronounced drop in HR (?0.86 bpm.%?1) while HR kinetics in NDs steadily decreased throughout BH (?0.47 bpm.%?1). By contrast, SV remained unchanged during BH in both groups (all > 0.05). Near-infrared spectroscopy (NIRS) results (mean ± SD) expressed as percentage changes from the initial values showed a lower [HHb] increase for BHDs than for NDs at the cessation of BH (+24.0 ± 10.1 vs. +39.2 ± 9.6%, respectively; < 0.05). As a result, BHDs showed a [tHb] drop that NDs did not at the end of BH (?7.3 ± 3.2 vs. ?3.0 ± 4.7%, respectively; < 0.05). The most striking finding of the present study was that BHDs presented an increase in oxygen-conserving efficiency due to substantial shifts in both cardiac and peripheral haemodynamics during simulated BH. In addition, the kinetic-based approach we used provides further credence to the concept of an “oxygen-conserving breaking point” in the human diving response.  相似文献   

12.
Skin and core tissue cooling modulates skeletal muscle oxygenation at rest. Whether tissue cooling also influences the skeletal muscle deoxygenation response during exercise is unclear. We evaluated the effects of skin and core tissue cooling on skeletal muscle blood volume and deoxygenation during sustained walking and running. Eleven male participants walked or ran six times on a treadmill for 60 min in ambient temperatures of 22°C (Neutral), 0°C for skin cooling (Cold 1), and at 0°C following a core and skin cooling protocol (Cold 2). Difference between oxy/deoxygenated haemoglobin ([diffHb]: deoxygenation index) and total haemoglobin content ([tHb]: total blood volume) in the vastus lateralis (VL) muscle was measured continuously. During walking, lower [tHb] was observed at 1 min in Cold 1 and Cold 2 vs. Neutral (P?0.05). Lower [diffHb] was seen at 1 and 10 min in Cold 2 vs. Neutral by 13.5 ± 1.2 µM and 15.3 ± 1.4 µM and Cold 1 by 10.4 ± 3.1 µM and 11.1 ± 4.1 µM, respectively (P?0.05). During running, [tHb] was lower in Cold 2 vs. Neutral at 10 min only (P = 0.004). [diffHb] was lower at 1 min in Cold 2 by 11.3 ± 3.1 µM compared to Neutral and by 13.5 ± 2.8 µM compared to Cold 1 (P?0.001). Core tissue cooling, prior to exercise, induced greater deoxygenation of the VL muscle during the early stages of exercise, irrespective of changes in blood volume. Skin cooling alone, however, did not influence deoxygenation of the VL during exercise.  相似文献   

13.
14.
The aim of this study was to investigate the performance of an Olympic-Weightlifting session training at three times of the day on the performance related to biochemical responses. Nine weightlifters (21 ± 0.5 years) performed, in randomised order, on three Olympic-Weightlifting training (snatch, clean and jerk) sessions (08:00 a.m., 02:00 p. m., 06:00 p. m.). Blood samples were collected: before, 3 min and 48 h after each training session. Haematological parameters and markers of muscle injury were assessed. Resting oral temperature and rating of perceived exertion (RPE) were also assessed during each session. ANOVA showed that the performance was better (P < 0.001) at 02:00 p. m. with a less RPE (P < 0.01) compared to the morning and the evening sessions while there was higher (P < 0.05) oral temperature at 06:00 p. m. versus 08:00 a.m. and 02:00 p. m. Muscle damage changed immediately (without significant effect after 48 h) after the training sessions with lower values ??in the evening compared to the morning. In conclusion, the afternoon training is more effective than morning or evening sessions for weightlifters. Therefore, coaches and weightlifters should be advised to schedule their training session in the afternoon hour.  相似文献   

15.
Abstract

The aim of this study was to assess the effect of intermittent hypoxia exposure on direct and indirect methods used to evaluate recombinant human erythropoietin (rhEPO) misuse. Sixteen male triathletes were randomly assigned to either the intermittent hypoxia exposure group (experimental group) or the control normoxic group (control group). The members of the experimental group were exposed to simulated altitude (from 4000 to 5500 m) in a hypobaric chamber for 3 h per day, 5 days a week, for 4 weeks. Blood and urine samples were collected before and after the first and the final exposures, and again 2 weeks after the final exposure. While serum EPO significantly increased after the first [from a mean 8.3 IU · l?1 (s = 3.2) to 16.6 IU · l?1 (s = 4.7)] and final exposures [from 4.6 IU · l?1 (s = 1.4) to 24.8 IU · l?1 (s = 9.3)], haemoglobin, percentage of reticulocytes, and soluble transferrin receptor were not elevated. Second-generation ON/OFF models (indirect rhEPO misuse detection) were insensitive to intermittent hypoxia exposure. The distribution of the urinary EPO isoelectric profiles (direct rhEPO misuse detection) was altered after intermittent hypoxia exposure with a slight shift towards more basic isoforms. However, those shifts never resulted in misinterpretation of results. The intermittent hypoxia exposure protocol studied did not produce any false-positive result for indirect or direct detection of rhEPO misuse in spite of the changes in EPO serum concentrations and urinary EPO isoelectric profiles, respectively.  相似文献   

16.
Abstract

The aim of this study was to determine whether 3 weeks of intermittent normobaric hypoxic exposure at rest was able to elicit changes that would benefit multi-sport athletes. Twenty-two multi-sport athletes of mixed ability were exposed to either a normobaric hypoxic gas (intermittent hypoxic training group) or a placebo gas containing normal room air (placebo group). The participants breathed the gas mixtures in 5-min intervals interspersed with 5-min recovery periods of normal room air for a total of 90 min per day, 5 days per week, over a 3-week period. The oxygen in the hypoxic gas decreased from 13% in week 1 to 10% by week 3. The training and placebo groups underwent a total of four performance tests, including a familiarization and baseline trial before the intervention, followed by trials at 2 and 17 days after the intervention. Time to complete the 3-km run decreased by 1.7%[95% confidence interval (CI) = ?0.6 – 3.9%] 2 days after, and by 2.3% (CI = 0.25 ? 4.4%) 17 days after, the last hypoxic episode in the training relative to the placebo group. Substantial changes in the training relative to the placebo group also included increased reticulocyte count 2 days (23.5%; CI =?1.9 to 44.9%) and 12 days (14.6%; CI = ?7.1 to 36.4%) post-exposure. The effect of intermittent hypoxic training on 3-km performance found in this study is likely to be beneficial, which suggests non-elite multi-sport athletes should expect such training to enhance performance.  相似文献   

17.
Abstract

Transverse plane rotations of the upper body are often estimated during the golf swing. The aim of this study was to determine the agreement between upper body alignments measured using markers attached to the thorax and markers on the acromion process during the golf drive. Three-dimensional coordinate data from nine markers were collected (300 Hz) during eight golf drives for 10 participants. The transverse plane alignment of the upper body was calculated using three techniques: inter-acromion vector, thorax vector, and Cardan angles. Agreement between the methods was then assessed using intra-class correlation and 95% limits of agreement. Our results suggested that the thorax vector can be used to provide an accurate estimation of thorax alignment at all stages of the golf swing (R ≥ 0.97, systematic difference < 1.0°, random difference < 3.8°). The inter-acromion vector gave an accurate estimation of thorax alignment at address (R = 0.90, systematic difference = 0.0°, random difference = 4.3°) but it should not be used to estimate thorax alignment at the top of the backswing (R = 0.32, systematic difference = ?16.0°, random difference = 8.7°) or impact (R = 0.90, systematic difference = ?5.1°, random difference = 8.3°) during the golf drive.  相似文献   

18.
ABSTRACT

This paper examined effects of two interventions on cardiorespiratory fitness and motor skills, and whether these effects are influenced by baseline levels, and dose of moderate-to-vigorous physical activity (MVPA) during the intervention. A cluster randomized controlled trial was implemented in 22 schools (n = 891; 9.2 ± 07 years). Intervention groups received aerobic or cognitively engaging exercise (14-weeks, four lessons per week). Control groups followed their regular physical education programme. Cardiorespiratory fitness, motor skills and MVPA were assessed. Multilevel analysis showed no main effects on cardiorespiratory fitness and motor skills although the amount of MVPA was higher in the aerobic than in the cognitively engaging and control group. Intervention effects did not depend on baseline cardiorespiratory fitness and motor skills. Children with a higher dose of MVPA within the intervention groups had better cardiorespiratory fitness after both interventions and better motor skills after the cognitively engaging intervention. In conclusion, the interventions were not effective to enhance cardiorespiratory fitness and motor skills at a group level, possibly due to large individual differences and to a total dose of MVPA too low to find effects. However, the amount of MVPA is an important factor that influence the effectiveness of interventions.  相似文献   

19.
Abstract

To clarify the physical and mental fatigue caused by intense exercise and the relationship between the two types of fatigue, we examined changes in anthropometric and biochemical variables, neutrophil function, and the Profile of Mood States (POMS) questionnaire in 13 female university judoists attending a one-week training camp. Blood glucose, total cholesterol, haemoglobin, leukocyte count, IgG, and phagocytic activity all decreased after the training camp compared with baseline (P ≤ 0.046). Aspartate aminotransferase, lactate dehydrogenase, creatine kinase, and neutrophil oxidative burst activity increased after the training camp (P ≤ 0.007). Of the POMS scores, that for Fatigue increased after the training camp (P = 0.041) and that for Vigour decreased (P = 0.042). The changes in several POMS scores correlated with the changes in blood biochemical variables. In particular, the change in Total mood disturbance was negatively associated with changes in myogenic enzymes (P ≤ 0.032). Our results suggest that intense exercise during training camps for female judoists leads to the appearance and accumulation of mental and physical fatigue, which are related to each other.  相似文献   

20.
The aim of this study was to investigate the effect of two different exercise interventions in the morning on football-specific components of performance in the afternoon under conditions simulating a competition day. In the morning on 3 experimental days, 12 football players (age 24.1?±?5.5 years) completed three different preload interventions that were applied in a counter-balanced order: (1) no intervention (NI); (2) moderate-intensive exercise (MI); and (3) high-intensive exercise (HI). The subjects performed the preload exercises, consisting of a small-sided game and repeated maximal sprints, from 10:00–11:00 a.m. At 3:00 p.m., the Bangsbo test (BT) was applied to examine the effects of the different morning interventions on football-specific endurance capacity. The results showed that the HI led to significantly higher blood-lactate concentrations (moderate to very large effect) and heart rates (very large to extremely large effect) compared to the MI. In addition, there was a significant measurement?×?intervention effect on concentrations of adrenalin and noradrenalin in the urine, which reached higher values immediately after the HI (very large effect) and MI (moderate effect) compared to NI. All effects disappeared by the time of the BT in the afternoon. During all trials, after the preload intervention, reaction time and critical flicker fusion frequency increased significantly compared to the baseline morning values (reaction time: small; critical flicker fusion: trivial to small effect), but no measurement?×?intervention interaction was found. During the BT, the mean total distance covered (trivial to small effect) and the pacing pattern did not differ significantly among the trials despite numerous small individual effects. We conclude that exercise interventions of various intensities in the morning have no general effect on football-specific components of performance in the afternoon despite significant metabolic, endocrinological and cognitive short-term effects. Coaches should consider individual preferences when prescribing competition-day procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号