首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
The aim of this study was to examine the influence of perceived intensity, duration and load of matches and training on the incidence of injury in rugby league players. The incidence of injury was prospectively studied in 79 semi-professional rugby league players during the 2001 season. All injuries sustained during matches and training sessions were recorded. Training sessions were conducted from December to September, with matches played from February to September. The intensity of individual training sessions and matches was estimated using a modified rating of perceived exertion scale. Training load was calculated by multiplying the training intensity by the duration of the training session. The match load was calculated by multiplying the match intensity by the time each player participated in the match. Training load increased from December (278.3 [95% confidence interval, CI 262.2 to 294.5] units) to February (385.5 [95% CI 362.4 to 408.5] units), followed by a decline until September (98.4 [95% CI 76.5 to 120.4] units). Match load increased from February (204.0 [95% CI 186.2 to 221.8] units) to September (356.8 [95% CI 302.5 to 411.1] units). More training injuries were sustained in the first half of the season (first vs second: 69.2% vs 30.8%, P < 0.001), whereas match injuries occurred more frequently in the latter stages of the season (53.6% vs 46.4%, P < 0.001). A significant relationship (P < 0.05) was observed between changes in training injury incidence and changes in training intensity (r = 0.83), training duration (r = 0.79) and training load (r = 0.86). In addition, changes in the incidence of match injuries were significantly correlated (P < 0.05) with changes in match intensity (r = 0.74), match duration (r = 0.86) and match load (r = 0.86). These findings suggest that as the intensity, duration and load of rugby league training sessions and matches is increased, the incidence of injury is also increased.  相似文献   

3.
The aim of this study was to examine the influence of perceived intensity, duration and load of matches and training on the incidence of injury in rugby league players. The incidence of injury was prospectively studied in 79 semi-professional rugby league players during the 2001 season. All injuries sustained during matches and training sessions were recorded. Training sessions were conducted from December to September, with matches played from February to September. The intensity of individual training sessions and matches was estimated using a modified rating of perceived exertion scale. Training load was calculated by multiplying the training intensity by the duration of the training session. The match load was calculated by multiplying the match intensity by the time each player participated in the match. Training load increased from December (278.3 [95% confidence interval, CI 262.2 to 294.5] units) to February (385.5 [95% CI 362.4 to 408.5] units), followed by a decline until September (98.4 [95% CI 76.5 to 120.4] units). Match load increased from February (204.0 [95% CI 186.2 to 221.8] units) to September (356.8 [95% CI 302.5 to 411.1] units). More training injuries were sustained in the first half of the season (first vs second: 69.2% vs 30.8%, P?<0.001), whereas match injuries occurred more frequently in the latter stages of the season (53.6% vs 46.4%, P?<0.001). A significant relationship (P?<0.05) was observed between changes in training injury incidence and changes in training intensity (r?=?0.83), training duration (r?=?0.79) and training load (r?=?0.86). In addition, changes in the incidence of match injuries were significantly correlated (P?<0.05) with changes in match intensity (r?=?0.74), match duration (r?=?0.86) and match load (r?=?0.86). These findings suggest that as the intensity, duration and load of rugby league training sessions and matches is increased, the incidence of injury is also increased.  相似文献   

4.
Repeated physical contact in rugby union is thought to contribute to post-match fatigue; however, no evidence exists on the effect of contact activity during field-based training on fatigue responses. Therefore, the purpose of this study was to examine the effect of contact during training on fatigue markers in rugby union players. Twenty academy rugby union players participated in the cross-over study. The magnitude of change in upper- and lower-body neuromuscular function (NMF), whole blood creatine kinase concentration [CK] and perception of well-being was assessed pre-training (baseline), immediately and 24?h post-training following contact and non-contact, field-based training. Training load was measured using mean heart rate, session rating of perceived exertion (sRPE) and microtechnology (Catapult Optimeye S5). The inclusion of contact during field-based training almost certainly increased mean heart rate (9.7; ±3.9%) and sRPE (42; ±29.2%) and resulted in likely and very likely greater decreases in upper-body NMF (?7.3; ±4.7% versus 2.7; ±5.9%) and perception of well-being (?8.0; ±4.8% versus ?3.4; ±2.2%) 24?h post-training, respectively, and almost certainly greater elevations in [CK] (88.2; ±40.7% versus 3.7; ±8%). The exclusion of contact from field-based training almost certainly increased running intensity (19.8; ±5%) and distance (27.5; ±5.3%), resulting in possibly greater decreases in lower-body NMF (?5.6; ±5.2% versus 2.3; ±2.4%). Practitioners should be aware of the different demands and fatigue responses of contact and non-contact, field-based training and can use this information to appropriately schedule such training in the weekly microcycle.  相似文献   

5.
We aimed to compare differentiated training loads (TL) between fitness responders and non-responders to an eight-week pre-season training period in a squad of thirty-five professional rugby union players. Differential TL were calculated by multiplying player’s perceptions of breathlessness (sRPE-B) and leg muscle exertion (sRPE-L) with training duration for each completed session. Performance-based fitness measures included the Yo-Yo Intermittent Recovery Test Level 1 (YYIRTL1), 10-, 20-, and 30-m linear sprint times, countermovement jump height (CMJ) and predicted one-repetition maximum back squat (P1RM Squat). The proportion of responders (≥ 75% chance that the observed change in fitness was > typical error and smallest worthwhile change) were 37%, 50%, 52%, 82% and 70% for YYIRTL1, 20/30-m, 10-m, CMJ and P1RM Squat, respectively. Weekly sRPE-B-TL was very likely higher in YYIRTL1 responders (mean difference = 18%; ±90% confidence limits 11%), likely lower in 20/30-m (19%; ±20%) and 10-m (18%; ±17%) responders, and likely higher in CMJ responders (15%; ±16%). All other comparisons were unclear. Weekly sRPE-B discriminate between rugby union players who respond to pre-season training when compared with players who do not. Our findings support the collection of differential ratings of perceived exertion and the use of individual response analysis in team-sport athletes.  相似文献   

6.
This study establishes the sleep behaviour of players and staff during the pre- and competitive seasons of elite rugby league. For seven days during both the pre- and competitive seasons, seven rugby league players and nine full-time staff from one professional Australian rugby league club had their sleep monitored via wrist actigraphy and self-report sleep diaries. Two-way repeated measures analysis of variance determined differences between the pre- and competitive season in players and staff, with effect sizes (ES) used to interpret the practical magnitude of differences. Findings show an earlier bed time and wake time for players (?34 min, ES?=?1.5; ±0.5 and ?39 min, 2.1; ±0.5 respectively) and staff (?29 min, ES?=?0.8; ±0.3 and ?35 min, ES?=?1.7; ±0.4 respectively) during pre-season when compared to the competitive season. Despite this, no differences were seen when considering the amount of time in bed, sleep duration or sleep efficiency obtained between the pre- and competitive seasons. Our results suggest that early morning training sessions scheduled during pre-season advances wake time in elite rugby league. However, both players and staff can aim to avoid reductions in sleep duration and sleep efficiency with subsequent adjustment of night time sleep patterns. This may be particularly pertinent for staff, who wake earlier than players during both the pre- and competitive seasons.  相似文献   

7.
ABSTRACT

This systematic review aimed to identify and summarise associations between currently identified contextual factors and match running in senior male professional rugby league. Eligible articles included at least one contextual factor and used GPS to measure at least one displacement variable within competitive senior, male, professional rugby league matches. Of the 15 included studies, the identified contextual factors were grouped into factors related to individual characteristics (n = 3), match result (n = 4), team strength (n = 2), opposition strength (n = 3), match conditions (n = 6), technical and tactical demands (n = 6), spatial and temporal characteristics (n = 7), and nutrition (n = 1). Speed was the most commonly reported measure of match running (100%), followed by distance (47%), and acceleration (20%). Inconsistencies were found between studies for most contextual factors on match running. Higher speeds were generally associated with higher fitness, encountered earlier in the match and whilst defending. All 15 studies utilised a univariate approach to quantify associations of a contextual factor. The inconsistencies found in the associations of given contextual factors highlight the complex and multi-faceted nature of match running. Therefore, practitioners should consider contextual factors when analysing and interpreting GPS data.  相似文献   

8.
Abstract

Pre-season rugby training develops the physical requisites for competition and consists of a high volume of resistance training and anaerobic and aerobic conditioning. However, the effects of a rugby union pre-season in professional athletes are currently unknown. Therefore, the purpose of this investigation was to determine the effects of a 4-week pre-season on 33 professional rugby union players. Bench press and box squat increased moderately (13.6 kg, 90% confidence limits ±2.9 kg and 17.6 ± 8.0 kg, respectively) over the training phase. Small decreases in bench throw (70.6 ± 53.5 W), jump squat (280.1 ± 232.4 W), and fat mass (1.4 ± 0.4 kg) were observed. In addition, small increases were seen in fat-free mass (2.0 ± 0.6 kg) and flexed upper-arm girth (0.6 ± 0.2 cm), while moderate increases were observed in mid-thigh girth (1.9 ± 0.5 cm) and perception of fatigue (0.6 ± 0.4 units). Increases in strength and body composition were observed in elite rugby union players after 4 weeks of intensive pre-season training, but this may have been the result of a return to fitness levels prior to the off-season. Decreases in power may reflect high training volumes and increases in perceived of fatigue.  相似文献   

9.
10.
The aim of this study was to compare the physical and movement demands between training and match-play in schoolboy and academy adolescent rugby union (RU) players. Sixty-one adolescent male RU players (mean ± SD; age 17.0 ± 0.7 years) were recruited from four teams representing school and regional academy standards. Players were categorised into four groups based on playing standard and position: schoolboy forwards (n = 15), schoolboy backs (n = 15), academy forwards (n = 16) and academy backs (n = 15). Global positioning system and accelerometry measures were obtained from training and match-play to assess within-group differences between conditions. Maximum data were analysed from 79 match files across 8 matches (1.3 ± 0.5 matches per participant) and 152 training files across 15 training sessions (2.5 ± 0.5 training sessions per participant). Schoolboy forwards were underprepared for low-intensity activities experienced during match-play, with schoolboy backs underprepared for all movement demands. Academy forwards were exposed to similar physical demands in training to matches, with academy backs similar to or exceeding values for all measured variables. Schoolboy players were underprepared for many key, position-specific aspects of match-play, which could place them at greater risk of injury and hinder performance, unlike academy players who were better prepared.  相似文献   

11.
The aims of this study were to determine the variability of weekly match and training loads in adolescent rugby union players across a competitive season, and to investigate the effect of match frequency on load distribution across different activities. Internal match and training load data (i.e. session-rating of perceived exertion (sRPE)) were collected daily from 20 players from a regional academy across a 14-week season. Data were analysed using a mixed-effects linear model, and variability was reported as a coefficient of variation (CV). Differences between 0-, 1-, 2-, and 3-match weeks were assessed using Cohen’s d effect sizes and magnitude-based inferences. Mean weekly total match and training sRPE load was 1425?±?545 arbitrary units (AU), with a between-player CV of 10?±?6% and within-player CV of 37?±?3%. Mean week-to-week change in total sRPE load was 497?±?423?AU (35%), and 40% of weekly observations were outside the suggested acute:chronic workload ratio ‘safe zone’. Total weekly sRPE loads increased substantially with match frequency (1210?±?571, 1511?±?489, and 1692?±?517?AU, for 0-, 1-, and 2-match weeks, respectively), except for 3-match weeks (1520?±?442?AU). Weekly match and training loads were highly variable for adolescent rugby players during the competitive season, and match frequency has a substantial effect on the distribution of loads. Therefore, match and training loads should be coordinated, monitored, and managed on an individual basis to protect players from negative training consequences, and to promote long-term athlete development.  相似文献   

12.
The aim of this study was to investigate how the type of contact influences physiological, perceptual and locomotive load during a simulated rugby league match. Eleven male university rugby league players performed two trials of the rugby league movement simulation protocol for interchange forwards with a traditional soft tackle bag and a weighted tackle sled to replicate contact demands. The interchange forward-specific simulation was chosen given the contact frequency is higher for this group of players compared to whole match players. Locomotive rate, sprint speed, tackle intensity, heart rate (HR) and rating of perceived exertion were analysed during the first and second bouts that replicated two ~23 min on-field passages. Countermovement jump (CMJ) was measured before and immediately after each trial. More time was spent in heart rate zone between 91 and 100% HRpeak during the first (effect size ± 90% confidence interval: 0.44 ± 0.49) and second bouts (0.44 ± 0.43), and larger (0.6 ± 0.69) decrements in CMJ performance were observed during the sled trial (5.9, = 4.9%) compared to the bag trial (2.6, = 5.4%). Changing the type of contact during the match simulation subtly altered both the internal and external loads on participants. Using a standard tackle bag results in faster sprint speed to contact, but lower overall high-intensity running. Conversely, a heavier tackle object increases the internal load and results in greater lower limb neuromuscular fatigue as reflected by the decrease in CMJ performance.  相似文献   

13.
Academy rugby league competition is an important step along the pathway to professional status, but little is known about injury at this level of the game. The aim of this research was to establish the nature, incidence and burden of injury in English academy rugby league. Using an observational prospective cohort study design, and a time-loss injury definition, the injury outcomes of three professional rugby league academies were recorded during the 2017 season. A total of 87 injuries occurred in 59 matches for an overall injury incidence of 85 (95%CI 67–103) injuries per 1000 hours played. The mean severity of injury was 22 ± 19 days resulting in an overall injury burden of 1898 (95%CI 1813–1983) days lost per 1000 hours. The tackle event was the most common cause of injury (77% of all injuries). Forwards sustained a greater proportion of injuries than backs (forwards 67% vs. backs 33% of injuries). Concussion (13 (6–20) per 1000 hours) and ankle sprains (11 (4–17) per 1000 hours) were the most commonly diagnosed injuries. The shoulder joint was the most commonly injured site (17 (9–25) per 1000 hours). The incidence of injury for academy rugby league is similar to senior professional rugby league.  相似文献   

14.
Abstract

The purpose of this study was to develop statistical models that estimate the influence of training load on training injury and physical fitness in collision sport athletes. The incidence of training injuries was studied in 183 rugby league players over two competitive seasons. Participants were assessed for height, body mass, skinfold thickness, vertical jump, 10-m, 20-m and 40-m sprint time, agility, and estimated maximal aerobic power in the off-season, pre-season, mid-season, and end-season. Training load and injury data were summarised into pre-season, early-competition, and late-competition training phases. Individual training load, fitness, and injury data were modelled using a logistic regression model with a binomial distribution and logit link function, while team training load and injury data were modelled using a linear regression model. While physical fitness improved with training, there was no association (P = 0.16 – 0.99) between training load and changes in physical fitness during any of the training phases. However, increases in training load during the early-competition training phase decreased (P = 0.04) agility performance. A relationship (P = 0.01 – 0.04) was observed between the log of training load and odds of injury during each training phase, resulting in a 1.50 – 2.85 increase in the odds of injury for each arbitrary unit increase in training load. Furthermore, during the pre-season training phase there was a relationship (P = 0.01) between training load and injury incidence within the training load range of 155 and 590 arbitrary units. During the early and late-competition training phases, increases in training load of 175 – 620 arbitrary units and 145 – 410 arbitrary units, respectively, resulted in no further increase in injury incidence. These findings demonstrate that increases in training load, particularly during the pre-season training phase, increase the odds of injury in collision sport athletes. However, while increases in training load from 175 to 620 arbitrary units during the early-competition training phase result in no further increase in injury incidence, marked reductions in agility performances can occur. These findings suggest that reductions in training load during the early-competition training phase can reduce the odds of injury without compromising agility performances in collision sport athletes.  相似文献   

15.
This study examined the changes in external outputs, including metabolic power variables, and internal response whilst considering contextual factors on physical performance variables during rugby league match play. Physical performance (total distance, high-speed running and high-power distances, average metabolic power), heart-rate (percentage heart-rate peak and training impulse), collisions (attacking and defensive) and contextual (time in attack, time in defence, time out of play) data were collected from 18 rugby league players during 38 games throughout two National Rugby League seasons. Physical variables were highest in the first 10-min period of each half (P < 0.001). Heart-rate indices peaked in the second 10-min period and were lower during second half periods (P < 0.001). Few differences existed in collisions and contextual factors across 10-min periods. Physical variables were highest during the first 5-min period compared to the final (P < 0.001). There was no difference in heart-rate response, attacking collisions or contextual factors between these periods. Following the peak 5-min period in the match, there were reductions in physical, heart-rate, defensive collisions and contextual factors (P < 0.001). The data show temporal changes in physical performance, heart-rate response and collisions during rugby league match play, although these are affected by contextual factors.  相似文献   

16.
The relationship between external training load and session rating of perceived exertion (s-RPE) training load and the impact that playing experience, playing position and 2-km time-trial performance had on s-RPE training load were explored. From 39 Australian Football players, 6.9 ± 4.6 training sessions were analysed, resulting in 270 samples. Microtechnology devices provided external training load (distance, average speed, high-speed running distance, player load (PL) and player loadslow (PLslow)). The external training load measures had moderate to very large associations (r, 95% CI) with s-RPE training load, average speed (0.45, 0.35–0.54), high-speed running distance (0.51, 0.42–0.59), PLslow (0.80, 0.75–0.84), PL (0.86, 0.83–0.89) and distance (0.88, 0.85–0.90). Differences were described using effect sizes (d ±95% CL). When controlling for external training load, the 4- to 5-year players had higher s-RPE training load than the 0- to 1- (0.44 ± 0.33) and 2- to 3-year players (0.51 ± 0.30), ruckmen had moderately higher s-RPE training load than midfielders (0.82 ± 0.58), and there was a 0.2% increase in s-RPE training load per 1 s increase in time-trial (95% CI: 0.07–0.34). Experience, position and time-trial performance impacted the relationship between external training load and s-RPE training load. This suggests that a given external training load may result in different internal responses between athletes, potentially leaving individuals at risk of overtraining or failing to elicit positive adaptation. It is therefore vital that coaches and trainers give consideration to these mediators of s-RPE training load.  相似文献   

17.
The aim of the present study was to analyse the training load in wheelchair basketball small-sided games and determine the relationship between heart rate (HR)-based training load and perceived exertion (RPE)-based training load methods among small-sided games bouts. HR-based measurements of training load included Edwards’ training load and Stagno’s training impulses (TRIMPMOD) while RPE-based training load measurements included cardiopulmonary (session RPEres) and muscular (session RPEmus) values. Data were collected from 12 wheelchair basketball players during five consecutive weeks. The total load for the small-sided games sessions was 67.5 ± 6.7 and 55.3 ± 12.5 AU in HR-based training load (Edwards’ training load and TRIMPMOD), while the RPE-based training loads were 99.3 ± 26.9 (session RPEres) and 100.8 ± 31.2 AU (session RPEmus). Bout-to-bout analysis identified greater session RPEmus in the third [P < 0.05; effect size (ES) = 0.66, moderate] and fourth bouts (P < 0.05; ES = 0.64, moderate) than in the first bout, but other measures did not differ. Mean correlations indicated a trivial and small relationship among HR-based and RPE-based training loads. It is suggested that HR-based and RPE-based training loads provide different information, but these two methods could be complementary because one method could help us to understand the limitations of the other.  相似文献   

18.
The impact of perceived wellness on a range of external load parameters, rating of perceived exertion (RPE) and external load:RPE ratios, was explored during skill-based training in Australian footballers. Fifteen training sessions involving 36 participants were analysed. Each morning before any physical training, players completed a customised perceived wellness questionnaire (sleep quality, fatigue, stress, mood and muscle soreness). Microtechnology devices provided external load (average speed, high-speed running distance, player load and player load slow). Players provided RPE using the modified Borg category-ratio 10 RPE scale. Mixed-effect linear models revealed significant effects of wellness Z-score on player load and player load slow. Effects are reported with 95% confidence limits. A wellness Z-score of ?1 corresponded to a ?4.9 ± 3.1 and ?8.6 ± 3.9% reduction in player load and player load slow, respectively, compared to those without reduced wellness. Small significant effects were also seen in the average speed:RPE and player load slow:RPE models. A wellness Z-score of ?1 corresponded to a 0.43 ± 0.38 m·min?1 and ?0.02 ± 0.01 au·min?1 change in the average speed:RPE and player load slow:RPE ratios, respectively. Magnitude-based analysis revealed that the practical size of the effect of a pre-training perceived wellness Z-score of ?1 would have on player load slow was likely negative. The results of this study suggests that monitoring pre-training perceived wellness may provide coaches with information about the intensity of output that can be expected from individual players during a training session.  相似文献   

19.
Abstract

We assessed the attentional demands of drawing and passing in rugby league players and investigated the effects of single-task and dual-task training on the acquisition, retention, and transfer of skill in these athletes. In Study 1, high-skilled and lesser-skilled rugby league players performed a standardized 2-on-1 drill under single-task (primary skill in isolation) and dual-task (primary skill while performing a secondary verbal tone recognition task) conditions. No differences were detected in primary task performance between groups, although the performance of the high-skilled players was more resistant to skill decrement under dual-task conditions. In Study 2, high-performance rugby league players were randomly allocated to either a single-task or dual-task training group. Each group underwent 8 weeks of training between the pre- and post-test sessions. While the mean improvement for draw and pass proficiency under dual-task conditions in the dual-task training group was greater than in the single-task training group (10.0% vs. 2.3%), the differences, while providing a moderate effect size (d = 0.57), were not statistically significant. These results suggest that the attentional demands of drawing and passing are reduced in high-skilled rugby league players compared with their lesser-skilled counterparts. In addition, compared with single-task training, dual-task training appears to improve the ability to perform dual-task draw and pass tasks (possibly through an improvement in time-sharing skills). Further studies are required to verify the efficacy of dual-task training as a training stimulus.  相似文献   

20.
There is limited research studying fluid and electrolyte balance in rugby union players, and a paucity of information regarding the test–retest reliability. This study describes the fluid balance of elite rugby union players across multiple squads and the reliability of fluid balance measures between two equivalent training sessions. Sixty-one elite rugby players completed a single fluid balance testing session during a game simulation training session. A subsample of 21 players completed a second fluid balance testing session during an equivalent training session. Players were weighed in minimal clothing before and after each training session. Each player was provided with their own drinks which were weighed before and after each training session. More players gained body weight (9 (14.8%)) during training than lost greater than 2% of their initial body mass (1 (1.6%)). Pre-training body mass and rate of fluid loss were significantly associated (r?=?0.318, p?=?.013). There was a significant correlation between rate of fluid loss in sessions 1 (1.74?±?0.32?L?h?1) and 2 (1.10?±?0.31?L.?h?1), (r?=?0.470, p?=?.032). This could be useful for nutritionists working with rugby squads to identify players with high sweat losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号