首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
二次曲线是高中解析几何的核心内容,抛物线是常见的二次曲线之一.在与抛物线有关的问题中,过抛物线的焦点的弦的问题是十分常见的,本文介绍若干有关抛物线的焦点弦的性质.性质1:已知抛物线y~2=2px,焦点弦P_1P_2⊥x轴,则:|P_1P_2|=2p  相似文献   

2.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

3.
不少书刊载文讨论了二次曲线弦中点问题的解法,本文拟探讨二次曲线弦的一般分点问题的处理.定理设二次曲线的斜率为k的弦P_1P_2被点P(x_o,y_o)分成定比,则当对X、y的偏导数.证将弦P_1P_2所在直线的参数方程(t为参数,tga=k)代入f(x,y)=0中整理,并注意到依条件,当且仅当时,方程(1)有二不同实根t_1.t_2,据韦达定理得将(2)、(3)代入(4)立得公式1°;将(2)、(3)代入(5)立得公式2°.定理证毕.特别地,若λ=1,则当上述各结论中的分点P(x_o,y_o)既可以是定点,也可以是动点,当P(x_o,y_o)是动点时,可…  相似文献   

4.
圆锥曲线弦的中点   总被引:1,自引:0,他引:1  
解析几何中,涉及圆锥曲线弦的中点问题很多。传统的解答方法是:将弦所在的直线方程,代入圆锥曲线方程,再应用韦达定理。但这样解常常导致冗长的运算,也没有体现弦中点的本质特征。那么,圆锥曲线弦中点究竟有哪些本质含义呢?现试阐述如下。一、弦中点决定所在弦的斜率由于现行教材中,把含交叉项xy的二次曲线:Ax~2+Bxy+Cy~2+Dx+Ey+F=0,作为选学内容,所以本文着重研究B=0的情况。定理一:设P_1P_2为圆锥曲线C_1:Ax~2+Cy~2+Dx+Ey+F=0的弦,M_0(x_0,y_0)为弦P_1P_2中点,k为弦斜率,若k存在,  相似文献   

5.
本文提供一种有关二次曲线弦中点的题目的解法,此法应用面较宽,且思路清楚,规律性强,计算简单,便于掌握。此法是以下面定理为基础的。定理若直线l与二次曲线C:f(x,y)=0交于P_1、P_2两点,P(x_0,y_0)是线段P_1P_2的中点,那么直线l的方程是  相似文献   

6.
平面解析几何中有关直线和二次曲线的位置关系,特别是相切关系的题目,综合性较强。处理这类习题,当然可用二次曲线的切线知识去解决,但有时运算过程较繁,而且条理不太清晰。笔者就此问题,引入二次曲线的“切点弦”法,对解决与切线有关的综合习题颇觉有益。一、二次曲线切点弦方程所谓二次曲线的切点弦,就是过二次曲线外一点引此曲线的两条切线,连结两个切  相似文献   

7.
一组平行直线族被二次曲线截得的线段,叫二次曲线的一组平行弦;一组过定点P_0(x_0,y_0)的直线族被二次曲线截得的线段,叫二次曲线的一组共点P_0(x_0,y_0)的弦。如图。  相似文献   

8.
如何求二次曲线的弦的中点轨迹方程,这是中学解析几何中常见的问题之一。目前解决这类问题的主要步骤是:根据所给条件建立弦的参数方程,将它与二次曲线的方程联立后,再求解,得出交点坐标(或将弦的参数方程代入二次曲线的方程后,利用根与系数的关系,求出二根之和),再利用中点坐标公式,便得到二次曲线的弦的中点轨迹参数方程,最后消  相似文献   

9.
求二次曲线以已知点为中点的弦的方程和弦的中点轨迹问题,已有不少文章论及,提出了许多不同的解法。本文从直线与二次曲线族的位置关系出发,也对这类问题进行一些探讨。一、二次曲线以已知点为中点的弦的方程我们知道,若直线l与圆心为O,半径为r的圆相切于P点,则任一以O为圆心,半径大于r的圆截l所得的弦都以P为中点。故给出点P(x_0,y_0)(异于原点)和圆x~2 y~2=R~2,当R~2>x_0~2 y_0~2时,要求以P为中点的弦所在直线的方程,只须在以原点为圆心的圆族x~2 y~2=r~2内,求出圆x~2 y~2=x_0~2 y_0~2在P点的切线方程即可,其方程为x_0x y_0y=x_0~2 y_0~2,即  相似文献   

10.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

11.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

12.
有关二次曲线弦的对口单招题及其简解策略   总被引:1,自引:0,他引:1  
综观1995年以来的江苏省普通高校单独招生统一考试的数学试卷,与二次曲线"弦长"和"弦中点"等知识有关的问题,在对口单招题中不仅出现频繁(每年都有一个大题目),而且占分普遍偏高,大部分都是"压轴题".它们在对口单招试卷中扮演着"举足轻重"的角色,其重要性可想而知.学生在处理这类与二次曲线弦有关的问题时,大都是先解出方程组求二次曲线交点坐标后再根据题目要求具体求解,过程比较繁琐,计算量往往偏大,不仅浪费学生大量的时间和精力,还常因头绪繁多出现差错,绝大多数职业高中学生由于求不出方程组的解或求解错误而前功尽弃.面对这一状况,我们教师必须及时引导职业高中学生思考和总结这类与二次曲线弦有关的问题的简解途径,顺利突破这一难关,为解决整个问题铺平道路.  相似文献   

13.
如果二次曲线的弦AB以M为中点,则称AB为点M的中点弦。文[1]、[2]先后讨论了二次曲线中点弦的存在性问题,但均用到了超出中学数学范围的知识。能否用通常的解析几何方法讨论其存在性问题?能否直接根据点M的位置而确定其中点弦所在直线的方程以及中点弦的弦长?本文对这几个问题均予以肯定的回答。  相似文献   

14.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

15.
在许多高三数学复习资料中有这样一道题:"已知椭圆(x2)/(4) (y2)/(9)=1上有一点P(1,(3(√3))/2),A,B是椭圆上异于点P的另外两点,若直线PA,PB的倾斜角互补,求证直线AB的斜率为定值."通过对这个问题的研究,笔者得到了一些与定向弦(如果点A,B在一条二次曲线上,那么我们就把AB称为这条二次曲线的一条弦.如果直线AB的斜率为定值,我们则称AB是这条二次曲线的定向弦)相关的有趣性质.  相似文献   

16.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

17.
设Γ为任意一条二次曲线,若Γ的过点 P 的弦 l 被P平分,则称 l 为Γ的以 P 为中点的中点弦,文[1]、[2]等均讨论过中点弦的存在问题,本文则在假定中点弦存在时给出统一的中点弦方程.  相似文献   

18.
本文介绍几个行列式型公式,它们的证明都十分容易,而其应用从某种角度上讲有一定的简便性。公式1 平面上过 P_1(x_1,y_1)、P_2(X_2,y_2) 两点的有心二次曲线的方程为只要设有心二次曲线方程的标准式为Ax~2+By~2+C=0,由齐次线性方程组(以A、B、C为未知数)具有非零解的条件,即可得证。  相似文献   

19.
如果二次曲线的弦AB以M为中点,则称AB为过点M的中点弦.中点弦问题是中学解析几何中的典型问题,它的存在性容易忽视.本文探究根据二次曲线方程及中点M的坐标判断中点弦的存在性及弦的方程.  相似文献   

20.
“OA⊥OB”时常出现在二次曲线弦的问题中,本介绍4种等价转化处理方法,供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号