首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在平面解析几何中 ,关于平行直线有如下结论 :设有两条平行直线l1:Ax By C1=0和l2 :Ax By C2 =0 ,则到这两条直线距离相等的直线方程为Ax By C1 C22 =0 .证明 设P(x ,y)是所求直线上任一点 ,由题设以及点到直线的距离公式 ,有|Ax By C1|A2 B2 =|Ax By C2 |A2 B2 .  因为l1与l2 在点P的两侧 ,所以有Ax By C1=- (Ax By C2 ) ,即 Ax By C1 C22 =0为所求的直线方程 .运用该结论可以得到一种求直线对称点的新方法 .例 已知A(- 2 ,4 ) ,求它关于直线l:2x- y -1=0的对…  相似文献   

2.
已知点P(x1,y1)不在直线l:Ax By C =0 (B≠ 0 )上 ,若P在l的上方 ,则B(Ax1 By1 C)>0 ;若P在l的下方 ,则B(Ax1 By1 C) <0 .1 证明 设P0 (x1,y0 )为l上的一点 ,则Ax1 By0 C=0 ,所以By0 =- (Ax1 C) ,有B2 y0 =-B(Ax1 C) .  若P在l的上方 ,则y1>y0 ,∴B2 y1>B2 y0 ,即   B2 y1>-B(Ax1 C) ,得B(Ax1 By1 C) >0 ;  若P在l的下方 ,则 y1<y0 ,同上可得B(Ax1 By1 C) <0 .2 应用例 1 已知直线l :ax y 2 =0 ,点 P( - 2 ,1) ,Q( 3,2 ) ,且P、Q位于直…  相似文献   

3.
20 0 1年广东省高考数学第 2 1题 :已知椭圆 :x22 y2 =1的右准线l与x轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线上且BC ∥x轴 ,求证 :直线AC经过线段EF的中点 .此题对一般性结论仍成立 ,还可以拓广到其它圆锥曲线 .拓广 1 已知椭圆 x2a2 y2b2 =1的右准线l与x轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线上且BC∥x轴 ,求证 :直线AC经过线段EF的中点 (a >b>0 ) .     图 1证明 如图 1,记直线AC与x轴的交点为N ,过A作AD⊥l,D是垂足 .…  相似文献   

4.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

5.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

6.
设P(x0 ,y0 )为任一点 ,直线l的方程为Ax By C =0 (A2 B2 ≠ 0 ) ,我们来求P到l的距离d .设Q(x1,y1)为P在l上的射影 ,当AB≠ 0 ,且P不在l上时 ,有d =|PQ|=(x1-x0 ) 2 (y1-y0 ) 2=(x1-x0 ) 2 [1 (y1-y0x1-x0) 2 ]=(x1-x0 ) 2 (1 B2  相似文献   

7.
近年高考中频频出现平面解析几何中的对称问题 ,由于此类问题在现行高中《平面解析几何》中讲得较少 ,令许多考生不知从何处着手 .现将近年来高考中的平面解析几何对称试题分类解答如下 ,以利于同学们提高解题速度 ,达到举一反三的作用 .一、点关于直线对称解此类题型先利用中点坐标公式 ,设P(x ,y)关于直线l :Ax By C =0的对称点为Q(m ,n) ,则PQ的中点在l上 ,坐标为 (x m2 ,y n2 ) ,则A×x m2 B× y n2 C =0 ,再根据直线PQ ⊥l ,得y-nx -m ×(-AB) =-1,进行求解 .例 1  (’91全国 )点P(2 ,5 )关…  相似文献   

8.
一、选择题1 θ∈ ( 0 ,π2 ) ,直线x +ytanθ +1=0的倾斜角是 (   )(A)θ   (B) π2 -θ(C) π2 +θ   (D)π -θ2 设点P(a ,3)在直线f(x ,y) =0上的射影是θ( 1,a) ,则f(x ,y)可以是 (   )(A) 2x - y +3   (B)x +2 y - 3(C) 2x - y +7   (D)x +2y - 73 直线l:ax +y +2 =0与线段P1P2 总有交点 ,若P1( - 2 ,1) ,P2 ( 3,2 )则实数a的取值范围是 (   )(A)a≥ 32    (B)a≤ - 43(C)a≤ - 43或a≥ 32(D) - 32 ≤a≤ 434 两条直线A1x +B1y +C1=0 ,A2 x +B2 y+C2 =0…  相似文献   

9.
定理 如果△ABC的面积为S ,点D、E、F依次分△ABC三边所成的比分别为λ1、λ2 、λ3 ,那么S△DEF =1 λ1λ2 λ3 (1 λ1) (1 λ2 ) (1 λ3 ) S .  证明 先看点D、E、F均在三边上 ,由已知得  AD∶DB =λ1,BE∶EC =λ2 ,CF∶FA =λ3 ,于是有AD =λ11 λ1AB ,BD =11 λ1AB ,BE =λ21 λ2BC , EC =11 λ2BC ,CF =λ3 1 λ3 CA , FA =11 λ3 CA .∴S△ADF =12 AD·AFsinA=12 · λ11 λ1AB· 11 λ3CA·sinA= λ1(1 λ1) (1 λ3 ) · 12 AB·AC·sin…  相似文献   

10.
定理 1 如图所示 ,记椭圆C的切线l与以椭圆长轴为直径的圆O从左至右依次交于A、B两点 ,则直线F1A ⊥l且直线F2 B ⊥l(其中F1、F2 表示椭圆的左、右焦点 ) .证明 当切点是椭圆的顶点时结论显然成立 ;当切点不是椭圆的顶点时 ,设C的方程为b2 x2 +a2 b2 =a2 b2   (a>b >0 ) ,则圆O的方程为x2 + y2 =a2 .设直线l与椭圆C的切点为M(acosθ ,bsinθ) ,则得切线l的方程为bcosθ·x +asinθ·y=ab . ①由①解出 y并代入x2 + y2 =a2 ,整理得(a2 sin2 θ +b2 cos2 θ)·x2 - 2ab2…  相似文献   

11.
在高中数学竞赛大纲中 ,二元一次不等式表示的区域是平面解析几何的一个重要组成部分 .这类问题主要包括区域的确定、区域面积的计算、区域型最值的求法、区域内整点(横、纵坐标均为整数的点 ,下同 )的计数等 .一、基础知识在直角坐标平面内 ,直线l可以用二元一次方程Ax By C =0来表示 ,点P(x0 ,y0 )在直线l上的充要条件是Ax0 By0 C =0 ;若点P不在直线l上 ,则Ax0 By0 C >0或Ax0 By0 C <0 ,二者必居其一 .直线l:Ax By C =0将平面划分为两个半平面Ax By C >0和Ax By C <0 ,位于同一…  相似文献   

12.
一道高考题的推广   总被引:1,自引:0,他引:1  
20 0 1年全国高考数学试题 (广东、河南卷 )第 2 1题“已知椭圆 x22 y2 =1的右准线l与x轴交于点E ,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线l上 ,且BC∥x轴。求证直线AC经过线段EF的中点。”参考答案是这样证明的 :设e是椭圆的离心率 ,如图 ,记直线AC与x轴的交点为N ,过A作AD⊥l,D是垂足。因F是椭圆右焦点 ,l是右准线 ,BC∥x轴 ,即BC⊥l,根据椭圆几何性质 ,得 :|AF||AD|=|BF||BC|=e。∵AD∥FE∥BC ,∴|EN||AD|=|CN||CA|=|BF||AB|,|FN||BC|=|AF||AB|,…  相似文献   

13.
有向线段P1P和PP2 数量的比叫做点P分P1P2所成的比 ,通常用λ表示这个比值 ,λ =P1PPP2 ,点P叫做P1P2 的定比分点 .若点P为P1P2 的内分点 ,则λ>0 ;若点P为P1P2 的外分点 ,则λ <0且λ≠ - 1;若P与P1重合 ,则λ =0 .我们可根据λ取值的正负来讨论P的位置 ,也可根据P的位置来讨论λ.下面举例说明 .例 1 已知P(3,- 1)、M(6 ,2 )、N(- 3,3) ,直线l过P点且与线段MN相交 ,求直线l的倾斜角的取值范围 .解 设l交MN于Q(xq,yq) ,又设l的方程为y+1=k(x- 3) ,λ =NQQM ,由定比分点公式得xq =- 3+6…  相似文献   

14.
下面是 2 0 0 2年的一道高考题 :设A、B是双曲线x2 -y22 =1上的两点 ,点N( 1 ,2 )是线段AB的中点 .( 1 )求直线AB的方程 ;( 2 )如果线段AB的垂直平分线与双曲线交于C、D两点 ,那么A、B、C、D 4点是否共圆 ?第 ( 1 )小题 .应用作差法和中点坐标公式易求得直线AB的斜率k=1 ,方程为x -y+1 =0 .第 ( 2 )小题 ,解法很多 ,为简化解题过程 ,可绕过求交点 ,直接建立圆的方程 ,证明 4点在这个圆上 .∵CD ⊥AB ,且过点N( 1 ,2 ) ,∴CD的方程为x +y-3 =0把直线AB、CD看成二次曲线 (x-y+1 ) (x +y-3 ) =0 ,这样…  相似文献   

15.
我们知道圆x2 + y2 =R2 在其上任一点 (x0 ,y0 )处的切线方程为x0 x+ y0 y=R2 如果对于直线Ax+By +C =0 (C ≠ 0 )作如下变形 :R2 A-CR2 x +R2 B-CR2 y =1.若点P(- R2 AC ,- R2 BC )满足圆的方程 ,则直线与圆相切于点P .椭圆 x2a2 + y2b2 =1在其上任一点 (x0 ,y0 )处的切线方程为 x0 xa2 + y0 yb2 =1,对于直线Ax+By +C =0 (C≠ 0 )作如下变形 :    a2 A-Ca2 x+b2 B Cb2 y=1.若点P(- a2 AC , b2 BC )满足椭圆方程 ,则直线与椭圆相切于点点P .双曲线x2a2 - y2…  相似文献   

16.
现行高中《平面解析几何》课本中关于“点到直线的距离公式”的推导是教学中的一个难点,如何突破这一教学难点?文〔1〕介绍了优于课本推导的一种简洁推导法,读后受益匪浅.受此启发,笔者又找到了优于课本推导的一种推导新法,并且还顺便得到了点P(x0,y0)关于直线l:Ax By C=0的对称点的坐标公式,现简介如下,供大家参考.设M(x,y)为直线l:Ax By C=0上的任意一点,由点到直线的距离的定义易知,点P(x0,y0)到直线l的距离d=|PM|min,从而求点P到直线l的距离d就转化为求目标函数:|PM|=(x-x0)2 (y-y0)2(1)在约束…  相似文献   

17.
1 题目与解法研究2 0 0 1年高考题 19(文 2 0 )题 :设抛物线 y2 =2 px(p>0 )的焦点为F ,经过点F的直线交抛物线于A、B两点 ,点C在抛物线的准线上 ,且BC∥x轴 ,证明直线AC经过原过O .     图 1证 1 如图 1,记x轴与抛物线准线l的交点为E ,过A作AD⊥l,D是垂足 ,于是有AD ∥EF∥BC .连结AC与EF相交于点N ,则|EN||AD| =|CN||AC| =|BF||AB|,|NF||BC| =|AF||AB|.根据抛物线的几何性质有|AF|=|AD| ,|BF|=|BC| ,所以|EN|=|AD|·|BF|…  相似文献   

18.
1999年第 5期《数学教学研究》刊登了袁良佐老师“双曲线中点弦性质的应用”和王景斌老师“抛物线弦的中点问题”两篇文章 ,读后颇有启发 .本文给出椭圆中点弦的一个性质 ,并举例说明它的应用 .性质 设A、B是椭圆x2a2 y2b2 =1(a >0 ,b >0 )上两点 ,P(x0 ,y0 )是弦AB的中点 ,则有kAB·kOP=- b2a2 .证明 设A(x1 ,y1 ) ,B(x2 ,y2 )是椭圆 x2a2 y2b2= 1上两点 ,则有x21 a2 y21 b2 =1,  x22a2 y22b2 =1,两式相减 ,得  x21 -x22a2 y21 - y22b2 =0 ,即 (x1 x2 ) (x1 -x2 )a2 …  相似文献   

19.
在新编高中数学教材中增加了向量一章后 ,向量的坐标可用其起点、终点的坐标来表示 ,使向量与平面解析几何有了必然的联系 ,特别是两向量垂直与平行的充要条件 ,给求曲线的轨迹方程带来了极大的方便 ,使解题过程由复杂而变为简单 ,下面举几例来说明向量在求曲线方程时的简单应用 :例 1 过定点M ( 2 ,1)引动直线l,l与x轴、y轴分别交于A、B两点 ,求线段AB中点P的轨迹方程 .分析 以往解析几何中 ,设过点 ( 2 ,1)的直线的斜率为k ,由点斜式得直线l的方程为 :y- 1=k(x - 2 ) ,然后分别令x=0 ,y=0 ,求出A、B两点的坐标 ,再设…  相似文献   

20.
胡喜才 《中学理科》2002,(10):12-13
今年高考 2 0题 ,旨在考察直线和圆锥曲线的关系 ,运算能力和逻辑推理能力 .方法灵活 ,难度不大 .既有效地考察了学生的基础知识 ,又突出了对学生能力的考察 ,是一道十分优秀的试题 ,笔者发现还有多种解法 ,现将主要解法加以整理 ,供读者参阅 .题目 :设A、B是双曲线x2 -y22 =1上的两点 ,点N(1 ,2 )是线段AB的中点 ,(Ⅰ )求直线AB的方程 .(Ⅱ )如果线段AB的垂直平分线与双曲线相交于C、D两点 ,那么A、B、C、D四点是否共圆 ?为什么 ?(Ⅰ )解法一 :利用直线点斜式方程依题意 ,可设直线AB的方程为  y=k(x-1 ) 2 ,代入…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号