首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在解析几何中,经常要求这样两类中点轨迹方程:第一类是求一个定点与二次曲线上任一点的连线的中点轨迹方程;第二类是过一个定点作二次曲线的弦,求弦中点的轨迹方程。本文准备给出这两类中点轨迹方程的一般形式,利用它们,可以直接写出要求的轨迹方程。设一般二次曲线的方程为 Ax~2 Bxy Cy~2 Dx Ey F=0其中A、B、C不全为零。为了方便起见,我们设f(x,y)=Ax~2 Bxy Cy~2 Dx Ey F,这样二次曲线的  相似文献   

2.
圆锥曲线弦的中点   总被引:1,自引:0,他引:1  
解析几何中,涉及圆锥曲线弦的中点问题很多。传统的解答方法是:将弦所在的直线方程,代入圆锥曲线方程,再应用韦达定理。但这样解常常导致冗长的运算,也没有体现弦中点的本质特征。那么,圆锥曲线弦中点究竟有哪些本质含义呢?现试阐述如下。一、弦中点决定所在弦的斜率由于现行教材中,把含交叉项xy的二次曲线:Ax~2+Bxy+Cy~2+Dx+Ey+F=0,作为选学内容,所以本文着重研究B=0的情况。定理一:设P_1P_2为圆锥曲线C_1:Ax~2+Cy~2+Dx+Ey+F=0的弦,M_0(x_0,y_0)为弦P_1P_2中点,k为弦斜率,若k存在,  相似文献   

3.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

4.
在解析几何中,利用导数求曲线的切线、法线、极值及研究曲线的形状是十分方便而有效的方法。本文试从导数入手,通过探讨两条直线的几何性质,研究二次曲线的中心位置及弦的中点轨迹方程(本文所指二次曲线均为非退化型)。设给定二次曲线方程为: f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=D……(1) 若把y看为常数,方程两边对x求导数,得到一条直线方程为: L_1:f_x=ZAx+By+D=0  相似文献   

5.
已知二次曲线方程为:F(x,y)=Ax~2 Bxy Cy~2 Dx Ey F=0,若以点P(x_0,y_0)为中点的二次曲线的弦存在,求这弦所在的直线方程,是解析几何里常见的一类问题。本文旨在给出这弦所在直线方程的四种求法。 方法一,设所求直线方程为y-y_0=k(x-x_0)将y=k(x-x_0) y_0代入二次曲线方程,整理得:(A BK CK~2)x~2-[2Cx_0k~2 (Bx_0-2Cy_0-E)k-(By_0 D)]x [Cx_0~2k~2-(2Cx_0y_0 Ex_0)k (Cy_0~2 Ey_0 F)]=0  相似文献   

6.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

7.
二次曲线方程的化简是中学数学教学十分重要的内容,而通常所用的方法是选取旋转角θ,用坐标变换 x=x' cosθ-y'sinθ y=x'sinθ+y'cosθ代入方程Ax~2+2Bxy+Cy~2+Dx+Ey+F=0,再进行二项式展开,合并同类项,计算繁复。本文介绍的方法将使方程的化简更为简便。首先介绍Ax~2+2Bxy+Cy~2+F=0(B≠0)的方程的化简。定理设二次曲线方程为Ax~2+2Bxy+Cy~2+F=0,则 (1)如果λ_1和λ_2是二次方程|_B~(A-λ) _(C-λ)~B|=λ~2-(A+C)λ+AC-B~2=0 ①的二个根,那么二次曲线方程可化为λ_1x'~2+λ_2y'~2+F=0 ②  相似文献   

8.
在平面解析几何里有这样一个问题:过二次曲线 Ax~2+Bxy+Cy~2+Dx+Ey+F=0……①的内部(不含周界)一点 P(x_0,y_0)引一弦 MN(如图1),使它恰在这一点被平分,求此弦所在直线的方程。解决这一问题的方法较多,通常的方法是利用“韦达定理”消去参数,以求得直线的斜率,或利用中点坐标公式,但这样做计算繁复,且易出错。下面介绍一种简便的方法。将方程①的两边对 x 求导,得  相似文献   

9.
本文给出圆锥曲线各种变动弦中点轨迹方程的统一求法,这种求法程序简单,便于记忆和应用。在此基础上就几类常见的弦中点轨迹问题分别举例加以说明。 一、一般圆锥曲线变动弦中点轨迹的统一方程及求法 引理:设圆锥曲线C的方程为:F(x,y)=Ax~2 Bxy Cy 2 Dx Ey F=0(1)记Fx(x,y)=2Ax By D,F'y(x,y)=Bx 2Cy E假如C以己知点M(Xo,yo)为中点的弦存在,则该弦所在直线的方程为:  相似文献   

10.
关于过二次曲线Ax~2+Cy~2+Dx+Ey+F=0(若二次曲线含有xy项,可以通过坐标变换化为如前的形状,这里只对一般情形进行讨论)内一已知点作被该点平分的弦,求这条弦所在的直线方程,此种问题要求是一条直线,而所求的直线又是通过已知点的,根据直线方程的点斜式,问题的关键在于找出它的斜率,由中点坐标公式,所求直线  相似文献   

11.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

12.
对于二元二次非奇次多项式 F(x,y)=Ax~2+Bxy+Cy~2++Dx+Ey+F(1) 是否能分解成两个一次因式之积,N.N.勃立瓦洛夫著的《解析几何学》一书中曾给出过一个充要条件.《数学通报》1981年  相似文献   

13.
二次曲线中点弦、切线、切点弦及双切线方程   总被引:1,自引:0,他引:1  
1 知识简介 记G(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F.1.1 二次曲线中点弦的方程  相似文献   

14.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

15.
尹建堂  彭跃丽 《考试》2003,(10):17-19
一、直径与直径方程圆锥曲线的平行弦的中点轨迹叫做圆锥曲线的直径,根据该定义不难推得圆锥曲线F(x,y)=0中平分斜率为k的弦的直径方程:曲线方程相应的直径方程  相似文献   

16.
过定点M(x0,y0)作(常态)圆锥曲线Г:f(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0(点M非曲线Г的中心)的弦l,若此弦被点M平分,则称弦l为中点弦.  相似文献   

17.
在平面解析几何中,我们知道二元二次方程 Ax~2+Bxy+Cy~2+Dx+Ey+F=0 (L)其中A、B、C不全为零,表示二次曲线。设在二次曲线(L)的同一平面上有已知点P(x_0,y_0),按如下置换法则;以P点的坐标(x_0,y_0)与二次曲线(L)  相似文献   

18.
在教解析几何圆锥曲线这部分内容时,发现圆锥曲线Ax~2+Bxy+Cy~2+Dx+Ey+F=0(本文中所指圆锥曲线方程都是指该方程)的导函数y’=(2Ax+By+D)/(Bx+2Cy+E)在解某些解析几何题目中有其广泛的应用。而且有些类型不同的题目可以得出形式类同的解答来。  相似文献   

19.
对于二次曲线Ax2+2Bxy+Cy2+2Dx+2Ey+F=0(A、B、C不全为零),我们记作F(x,y)=0,把经过代换所得的形如  相似文献   

20.
有心二次曲线的直接作图法   总被引:1,自引:0,他引:1  
一般二次曲线方程:Ax~2+Bxy+Cy~2+Dx+Ey+F=0 (1) 若B~2-4AC≠O,则(1)表示椭圆或双曲线,对这个方程的讨论,是解析几何课程中的一个重要组成部分。而传统的化简方法都采用坐标变换的形式。本文提出一种不经过坐标的平移和旋转,直接在原坐标系中确定对称轴,顶点或双  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号