首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force – time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N · s, s = 12,229; non-climbers: 35,325 N · s, s = 9724) but not in the continuous test (climbers: 21,043 N · s, s = 4474; non-climbers: 15,816 N · s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force – time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023 – 40% test timepoint, P = 0.014 – 60% test timepoint). Pressor responses were similar between groups and not related to the force – time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

2.
3.
There is limited information on the anthropometry, strength, endurance and flexibility of female rock climbers. The aim of this study was to compare these characteristics in three groups of females: Group 1 comprised 10 elite climbers aged 31.3 ± 5.0 years (mean ± s ) who had led to a standard of ‘hard very severe’; Group 2 consisted of 10 recreational climbers aged 24.1 ± 4.0 years who had led to a standard of ‘;severe’; and Group 3 comprised 10 physically active individuals aged 28.5 ± 5.0 years who had not previously rock-climbed. The tests included finger strength (grip strength, finger strength measured on climbing-specific apparatus), flexibility, bent arm hang and pull-ups. Regression procedures (analysis of covariance) were used to examine the influence of body mass, leg length, height and age. For finger strength, the elite climbers recorded significantly higher values ( P < 0.05) than the recreational climbers and non-climbers (four fingers, right hand: elite 321 ± 18 N, recreational 251 ± 14 N, non-climbers 256 ± 15 N; four fingers, left hand: elite 307 ± 14 N, recreational 248 ± 12 N, non-climbers 243 ± 11 N). For grip strength of the right hand, the elite climbers recorded significantly higher values than the recreational climbers only (elite 338 ± 12 N, recreational 289 ± 10 N, non-climbers 307 ± 11 N). The results suggest that elite climbers have greater finger strength than recreational climbers and non-climbers.  相似文献   

4.
There is limited information on the anthropometry, strength, endurance and flexibility of female rock climbers. The aim of this study was to compare these characteristics in three groups of females: Group 1 comprised 10 elite climbers aged 31.3 +/- 5.0 years (mean +/- s) who had led to a standard of 'hard very severe'; Group 2 consisted of 10 recreational climbers aged 24.1 +/- 4.0 years who had led to a standard of 'severe'; and Group 3 comprised 10 physically active individuals aged 28.5 +/- 5.0 years who had not previously rock-climbed. The tests included finger strength (grip strength, finger strength measured on climbing-specific apparatus), flexibility, bent arm hang and pull-ups. Regression procedures (analysis of covariance) were used to examine the influence of body mass, leg length, height and age. For finger strength, the elite climbers recorded significantly higher values (P < 0.05) than the recreational climbers and non-climbers (four fingers, right hand: elite 321 +/- 18 N, recreational 251 +/- 14 N, non-climbers 256 +/- 15 N; four fingers, left hand: elite 307 +/- 14 N, recreational 248 +/- 12 N, non-climbers 243 +/- 11 N). For grip strength of the right hand, the elite climbers recorded significantly higher values than the recreational climbers only (elite 338 +/- 12 N, recreational 289 +/- 10 N, non-climbers 307 +/- 11 N). The results suggest that elite climbers have greater finger strength than recreational climbers and non-climbers.  相似文献   

5.
6.
The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

7.
This study aimed to (1) evaluate the effect of hand shaking during recovery phases of intermittent testing on the time–force characteristics of performance and muscle oxygenation, and (2) assess inter-individual variability in the time to achieve the target force during intermittent testing in rock climbers. Twenty-two participants undertook three finger flexor endurance tests at 60% of their maximal voluntary contraction until failure. Performances of a sustained contraction and two intermittent contractions, each with different recovery strategies, were analysed by time–force parameters and near-infrared spectroscopy. Recovery with shaking of the forearm beside the body led to a significantly greater intermittent test time (↑ 22%, P?P?P?相似文献   

8.
Different ambient temperatures are known to affect muscular performance based on the type of contraction. The effect of cold (10°C) and thermoneutral (TN) (24°C) ambient temperatures on finger flexor performance was examined in 12 rock climbers. After 30?min of seated rest in the designated temperature condition, participants completed maximal voluntary contractions (MVC) on a climbing-specific finger flexor assessment device equipped with a crimp grip hold. Participants then completed an intermittent fatiguing task until failure. The fatiguing task consisted of 10-s contractions at 40% MVC followed by a 3-s of rest. MVC recovery was assessed immediately, 5, 10, and 15?min post-task failure. Estimated muscle temperature and subjective thermal ratings were significantly lower throughout testing in the cold condition (P?<?.001). Finger flexor MVC strength was similar between conditions at baseline and throughout recovery. Time to task failure was significantly longer (364?±?135 vs. 251?±?97 s, P?=?.003) and force time integral was greater (53,715?±?19,988 vs. 40,243?±?15,360?Ns, P?=?.001) during the cold condition. No significant differences were found between conditions for force variability or electromyography (EMG) at the start and end of the fatiguing task. However, the rate of increase in EMG for the TN condition was significantly faster (P?=?.03). These results suggest important implications for researchers when examining climbing performance, especially in outdoor settings where temperatures may vary from day to day. Inconsistencies in testing temperatures might significantly affect muscular endurance.  相似文献   

9.
Abstract

The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

10.
This study examined differences in the oxygenation kinetics and strength and endurance characteristics of boulderers and lead sport climbers. Using near infrared spectroscopy, 13-boulderers, 10-lead climbers, and 10-controls completed assessments of oxidative capacity index and muscle oxygen consumption (m?O2) in the flexor digitorum profundus (FDP), and extensor digitorum communis (EDC). Additionally, forearm strength (maximal volitional contraction MVC), endurance (force–time integral FTI at 40% MVC), and forearm volume (FAV and ΔFAV) was assessed. MVC was significantly greater in boulderers compared to lead climbers (mean difference?=?9.6, 95% CI 5.2–14?kg). FDP and EDC oxidative capacity indexes were significantly greater (p?=?.041 and .013, respectively) in lead climbers and boulderers compared to controls (mean difference?=??1.166, 95% CI (?3.264 to 0.931?s) and mean difference?=??1.120, 95% CI (?3.316 to 1.075?s), respectively) with no differences between climbing disciplines. Climbers had a significantly greater FTI compared to controls (mean difference?=?2205, 95% CI=?1114–3296 and mean difference?=?1716, 95% CI?=?553–2880, respectively) but not between disciplines. There were no significant group differences in ΔFAV or m?O2. The greater MVC in boulderers may be due to neural adaptation and not hypertrophy. A greater oxidative capacity index in both climbing groups suggests that irrespective of climbing discipline, trainers, coaches, and practitioners should consider forearm specific aerobic training to aid performance.  相似文献   

11.
The aim of this study was to examine neuromuscular variables contributing to differences in force loss after participants were exposed to the same relative bout of eccentric exercise. Thirty-six males performed 50 maximal eccentric contractions of the elbow flexors and were stratified into high responders (n = 10) and low responders (n = 10) based on force loss 36 h after exercise. Maximal voluntary isometric contractions (MVCs) and electromyography (EMG) were measured at baseline and 36 h after exercise. During eccentric exercise, mean peak torque, mean end-range torque from the final 25% of each trial and total angular impulse were computed over 25 contractions in each of two bouts. The slope of the change in these values for each 25 eccentric contractions was calculated for each participant using linear regression. At baseline, MVC was not different between groups (low responders: 97.0 +/- 9.6 N x m; high responders: 82.7 +/- 6.4 N x m; P = 0.08). High responders demonstrated a 68% (range 62-78%) reduction in MVC and low responders a 39% (29-48%) reduction after exercise. Peak torque, end-range torque and total angular impulse were 13%, 40% and 33% higher, respectively, in the low than in the high responders (peak torque: P = 0.0002; end-range torque: P < 0.0001; total angular impulse: P < 0.001). The rate of decline in peak torque slope was greater in high than in low responders (P = 0.044). In conclusion, lower peak torque, end-range torque and total angular impulse during eccentric contractions and a greater peak torque slope may identify high responders to eccentric exercise.  相似文献   

12.
Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the relationship between finger flexor all-out test scores and climbing ability. Methods: To determine the effect of AF, 22 male climbers performed 2 maximal strength and all-out tests with AF (shoulder and elbow flexed at 90°) and without AF (shoulder flexed at 180° and elbow fully extended). To determine reliability, 9 male climbers completed 2 maximal strength tests with and without AF and an all-out and intermittent test without AF. Results: The maximal strength test without AF more strongly determined climbing ability than the test with AF (r2 = .48 and r2 = .42 for sport climbing; r2 = .66 and r2 = .42 for bouldering, respectively). Force and time variables were highly reliable; the rate of force development and fatigue index had moderate and low reliability. The maximal strength test with AF provided slightly higher reliability than without AF (intraclass correlation coefficient [ICC] = 0.94, ICC = 0.88, respectively). However, smaller maximal forces were achieved during AF (484 ± 112 N) than without AF (546 ± 132 N). All-out test average force had sufficiently high reliability (ICC = 0.92) and a relationship to sport climbing (r2 = .42) and bouldering ability (r2 = .58). Conclusion: Finger strength and endurance measurements provided sufficient construct validity evidence and high reliability for time and force parameters. Arm fixation provides more reliable results; however, the position without AF is recommended as it is more related to climbing ability.  相似文献   

13.
Currently, the physiological mechanisms that allow elite level climbers to maintain intense isometric contractions for prolonged periods of time are unknown. Furthermore, it is unclear whether blood flow or muscle oxidative capacity best governs performance. This study aimed to determine the haemodynamic kinetics of 2 forearm flexor muscles in 3 ability groups of rock climbers. Thirty-eight male participants performed a sustained contraction at 40% of maximal voluntary contraction (MVC) until volitional fatigue. Oxygen saturation and blood flow was assessed using near infrared spectroscopy and Doppler ultrasound. Compared to control, intermediate, and advanced groups, the elite climbers had a significantly (< 0.05) higher strength-to-weight ratio (MVC/N), de-oxygenated the flexor digitorum profundus significantly (< 0.05) more (32, 34.3, and 42.8 vs. 63% O2, respectively), and at a greater rate (0.32, 0.27, and 0.34 vs. 0.77 O2%·s?1, respectively). Furthermore, elite climbers de-oxygenated the flexor carpi radialis significantly (< 0.05) more and at a greater rate than the intermediate group (36.5 vs. 14.6% O2 and 0.43 vs. 0.1O2%·s?1, respectively). However, there were no significant differences in total forearm ? blood flow. An increased MVC/N is not associated with greater blood flow occlusion in elite climbers; therefore, oxidative capacity may be more important for governing performance.  相似文献   

14.
The aim of the study was to evaluate, by an electromyographic (EMG) and mechanomyographic (MMG) combined approach, whether years of specific climbing activity induced neuromuscular changes towards performances related to a functional prevalence of fast resistant or fast fatigable motor units. For this purpose, after the maximum voluntary contraction (MVC) assessment, 11 elite climbers and 10 controls performed an exhaustive handgrip isometric effort at 80% MVC. Force, EMG and MMG signals were recorded from the finger flexor muscles during contraction. Time and frequency domain analysis of EMG and MMG signals was performed. In climbers: (i) MVC was higher (762 ± 34 vs 512 ± 57 N; effect size: 1.64; confidence interval: 0.65–2.63; < 0.05); (ii) endurance time at 80% MVC was 43% longer (34.2 ± 3.7 vs 22.3 ± 1.5 s; effect size: 1.21; confidence interval: 0.28–2.14; < 0.05); (iii) force accuracy and stability were greater during contraction (< 0.05); (iv) EMG and MMG parameters were higher throughout the entire isometric effort (< 0.05). Collectively, force, EMG and MMG combined analysis revealed that several years of specific climbing activity addressed the motor control system to adopt muscle activation strategies based on the functional prevalence of fast resistant motor units.  相似文献   

15.
Previous studies analysing electromyograms (EMGs) from indwelling electrodes have indicated that fast-twitch motor units are selectively recruited for low-intensity eccentric contractions. The aim of this study was to compare the frequency content of surface EMGs from quadriceps muscles during eccentric and concentric contractions at various contraction intensities. Electromyograms were recorded from the rectus femoris, vastus lateralis and vastus medialis muscles of 10 men during isokinetic (1.05 rad x s(-1)) eccentric and concentric knee extension contractions at 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC) for each contraction mode. Additionally, isometric contractions (70 degrees) were performed at each intensity. The mean frequency and root mean square (RMS) of the surface EMG were computed. Mean frequency was higher for eccentric than concentric contractions at 25% (P < 0.01), 50% (P < 0.01) and 75% (P < 0.05) but not at 100% MVC. It increased with increasing contraction intensity for isometric (P < 0.001) and concentric (P < 0.01) contractions but not for eccentric contractions (P = 0.27). The EMG amplitude (RMS) increased with increasing contraction intensity similarly in each contraction mode (P < 0.0001). Higher mean frequencies for eccentric than concentric contractions at submaximal contraction intensities is consistent with more fast-twitch motor units being active during eccentric contractions.  相似文献   

16.
In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; VO(2max) 55.5 ml x kg(-1) x min(-1), s = 5.8) undertook repeated sprints at 120% of the speed at which VO(2max) was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = 0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = - 0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

17.
Abstract

Non-local muscle fatigue has been demonstrated with unilateral activities, where fatiguing one limb alters opposite limb forces. Fewer studies have examined if non-local fatigue occurs with unrelated muscles. The purpose of this study was to investigate if knee extensors fatigue alters elbow flexors force and electromyography (EMG) activity. Eighteen males completed a control and fatiguing session (randomised). Blood lactate was initially sampled followed by three maximal voluntary contractions (MVC) with the elbow flexors and two with the knee extensors. Thereafter, subjects either sat (control) or performed five sets of bilateral dynamic knee extensions to exhaustion using a load equal to the dominant limb MVC (1-min rest between sets). Immediately afterwards, subjects were assessed for blood lactate and unilateral knee extensors MVC, and after 1 min performed a single unilateral elbow flexor MVC. Two minutes later, subjects performed 12 unilateral elbow flexor MVCs (5 s contraction/10 s rest) followed by a third blood lactate test. Compared to control, knee extensor force dropped by 35% (p < 0.001; ES = 1.6) and blood lactate increased by 18% (p < 0.001; ES = 2.8). Elbow flexor forces were lower after the fatiguing protocol only during the last five MVCs (p < 0.05; ES = ~0.58; ~5%). No changes occurred between conditions in EMG. Elbow flexor forces significantly decreased after knee extensors fatigue. The effect was revealed during the later stages of the repeated MVCs protocol, demonstrating that non-local fatigue may have a stronger effect on repeated rather than on single attempts of maximal force production.  相似文献   

18.
Following preliminary indications that in some individuals arm exercise enhanced rather than reduced simultaneous leg endurance, ten young men and women performed three forms of intermittent work to volitional exhaustion, under duty cycles of 45 s work, 15 s rest. The protocols were as follows: (A) knee extensions at 30% maximum voluntary contraction (MVC); (B) 30% MVC knee extensions combined with arm cranking at 130% of their own lactate threshold; (C) combined 30% MVC knee extensions and arm cranking at 20% of their own lactate threshold. Heart rate, oxygen uptake (VO(2)), and blood lactate concentration were among the variables recorded throughout. All physiological indicators of demand were substantially higher in protocol B than in protocols A or C [heart rate: (A) 154 beats . min(-1), (B) 171 beats . min(-1), (C) 150 beats . min(-1); VO(2): (A) 11.9 ml . kg(-1) . min(-1), (B) 21.7 ml . kg(-1) . min(-1), (C) 14.2 ml . kg(-1) . min(-1); blood lactate concentration: (A) 3.3 mmol . l(-1), (B) 5.1 mmol . l(-1), (C) 2.8 mmol . l(-1)], yet there were no significant differences (P > 0.05) in the endurance times between the three conditions [(A) 11.43 min, (B) 11.1 min, (C) 10.57 min] and seven participants endured longest in protocol B. Results from protocol (C) cast doubt on explanations in terms of psychological distraction. We suggest that lactic acid produced by the arms is shuttled to the legs and acts there either as a supplementary fuel source or as an antagonist to the depressing effects of increased potassium concentration.  相似文献   

19.
The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10 degrees C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s(x) = 4) and 48 h (mean 3%, s(x) = 3) compared with the control group (mean 21%, s(x) = 5 and mean 14%, s(x) = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.  相似文献   

20.
Connective tissue adaptations in the fingers of performance sport climbers   总被引:1,自引:0,他引:1  
Abstract

This study investigates the changes of the connective tissue in the fingers of performance sport climbers resulting after a minimum of 15 years of climbing. Evaluation was performed by ultrasonography on the palmar side of the fingers (Dig) II–V to measure the thickness of the A2 and A4 annular pulleys, the flexor digitorum superficialis (FDS) and profundus (FDP) tendons and the palmar plates (PP's) of the proximal interphalangeal (PIP) as well as distal interphalangeal (DIP) joint in sagittal and axial direction. Totally, 31 experienced male sport climbers (mean age 37y, 30–48y grade French scale median 8b, range 7b+ to 9a+) participated in the study. The control-group consisted of 20 male non-climbers (age 37y, 30–51y). The A2 and A4 pulleys in climbers were all significantly thicker (A2 Dig III 62%, Dig IV 69%; A4 Dig III 69%, Dig IV 76%) as compared to non-climbers pulleys. All PP's of the DIP joints were also significantly thicker, particularly at Dig III and IV (76 and 67%), whereas the PP's at PIP joints were only scarce significant for three joints. Differences of the diameter of the flexor tendons were less distinct (1–21%) being significant only over the middle phalanx. High load to the fingers of rock climbers after a minimum of 15 years of climbing years induced considerable connective tissue adaptions in the fingers, most distinct at the flexor tendon pulleys and joint capsule (PP) of the DIP joints and well detectable by ultrasound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号