首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to assess the effect of a unilateral anterior cruciate ligament reconstruction (ACLR) on maximum voluntary contraction (MVC) and explosive strength of both the involved limb and the uninvolved limb. Nineteen male athletes completed a standard isometric testing protocol 4 months post-ACLR, while 16 healthy participants served as a control group (CG). The explosive strength of the knee extensors and flexors was assessed as RFD obtained from the slope of the force–time curves over various time intervals. Both muscle groups of the involved limb had significantly lower MVC compared to the uninvolved. The involved limb also had significantly lower RFD in the late phase of contraction (140–250 ms) for both knee extensors and flexors (P < 0.05). There was no difference in MVC between the uninvolved limb and the CG. However, RFD of the uninvolved limb was lower compared to CG for both knee extensors (0–180 ms; P < 0.01) and flexors (0–150 ms; P < 0.05). ACLR leads to lower MVC and explosive strength of the involved limb. As a consequence of potential crossover (presumably neural-mediated) effects, explosive strength deficits could be bilateral, particularly in the early phase of the contraction (<100 ms).  相似文献   

2.
Abstract

Twenty-seven male subjects performed two 5-min bouts of rhythmic, isometric elbow flexion and two similar bouts of knee extension at a rate of 30 maximal contractions per min. Exponential analyses revealed that the pattern of fatigue for each limb followed a single component curve of the form: Yt = a0e ?Kot + c. An analysis of variance comparing the results from the two limbs revealed that (a) the strength scores for the leg were significantly (p < .05) higher than those for the arm throughout the exercise bouts; (b) both limbs experienced a significant strength decrement; and (c) there was significant interaction between trials and limbs. It appeared that the greater loss of strength by the knee extensors was reponsible for this interaction. It was concluded that during a rhythmic, all-out task, the rates of fatigue experienced by the two muscle groups tend to differ, with the elbow flexors fatiguing more rapidly initially but reaching a plateau at a relatively higher level than the knee extensors.  相似文献   

3.
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque–angle (T–A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s-1. Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T–A relationship had an inverted “U”-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.  相似文献   

4.
Abstract

Match-induced fatigue of knee muscle strength and agonist-antagonist strength-ratios may affect both performance and risk of injury in soccer players. Once explosive tasks are imperative in soccer as well as hamstring strain injuries occur during high-velocity moments, rapid force capacity of this muscle group is especially important. This study evaluated the effect of match-induced fatigue on knee muscle strength and strength-ratio parameters after a single professional soccer match. Male professional soccer players (n?=?16; 24.2?±?3.9 years) were tested before and after a soccer match (56.2?±?22.6?min of playing) for knee flexors (hamstring) and extensors (quadriceps) isometric peak torque (MVC) and rate of torque development (RTD) – as well as the hamstring-to-quadriceps ratio (H:Q) – at 30° of knee flexion. Knee injuries often occur at this joint angle, which is common in sprinting, pivoting, sidecutting, and jumping. Match-induced fatigue caused a left shift in the knee extensors torque-time curve with no significant change in both early (i.e. 0–50?ms) and late (i.e. 0–200?ms) RTD, and a right shift in the knee flexors torque-time curve with a decrease in early RTD (~16%, p?=?.029) and late RTD (~11%, p?=?.011). Knee extensors and knee flexors peak torque remained unchanged (p?>?.05). Early RTD H:Q decreased by~24% (p?=?.027), while late RTD H:Q and MVC H:Q remained unchanged (p?>?.05). In conclusion, match-induced fatigue impaired the ability to rapidly produce force at an angle where injuries are most susceptible to occur. Important information is missed if only the traditional H:Q is considered.  相似文献   

5.
Abstract

The temporal structure, or complexity, of muscle torque output reflects the adaptability of motor control to changes in task demands. This complexity is reduced by neuromuscular fatigue during intermittent isometric contractions. We tested the hypothesis that sustained fatiguing isometric contractions would result in a similar loss of complexity. To that end, nine healthy participants performed, on separate days, sustained isometric contractions of the knee extensors at 20% MVC to task failure and at 100% MVC for 60?s. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified by calculating approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. Fatigue reduced the complexity of both submaximal (ApEn from 1.02?±?0.06 to 0.41?±?0.04, P?<?0.05) and maximal contractions (ApEn from 0.34?±?0.05 to 0.26?±?0.04, P?<?0.05; DFA α from 1.41?±?0.04 to 1.52?±?0.03, P?<?0.05). The losses of complexity were accompanied by significant global, central and peripheral fatigue (all P?<?0.05). These results demonstrate that a fatigue-induced loss of torque complexity is evident not only during fatiguing intermittent isometric contractions, but also during sustained fatiguing contractions.  相似文献   

6.
Abstract

Nineteen college men and women (aged 18–23 yrs, × = 21.1) were studied to ascertain the force-time components of a rapid maximal voluntary isometric contraction (MVC) for ankle dorsiflexors, knee extensors, elbow flexors, wrist flexors and hand grip. Standardized isometric strength testing protocol was used. After a practice period subjects were instructed to make an MVC without jerking and as quickly as possible, for each of the muscle actions noted above. Force readings were taken from a load cell assembly through an analogue-to-digital converter and analyzed to yield time values for MVC, 3/4 MVC, 1/2 MVC, and 1/4 MVC. The results indicated significant differences (p < .01) between the responses of the men and women, with the women reaching full MVC more rapidly than the men. Also, there were significant differences among the five muscle groups tested, with the wrist flexor muscle group developing MVC most quickly, while the knee extensors took the longest time to full MVC. Based upon these data it may be concluded that the time to full MVC differs between men and women, and also that the time to full MVC differs among the five muscle groups tested in this experiment.  相似文献   

7.
This study investigated the relationships between aerobic characteristics and (i) neuromuscular fatigue induced by 2-min sustained isometric maximal voluntary contractions (MVC) and (ii) subsequent recovery, in the upper and lower limbs. In a pseudo-randomized order, eleven healthy males completed four sessions on different days: maximal incremental cycling test (100 W + 40 W every 2 min); maximal arm-cranking test (50 W + 20 W every 2 min); and 2-min sustained isometric MVCs of the knee extensors (KE) and elbow flexors (EF). Neuromuscular assessment was performed with transcranial magnetic and peripheral nerve stimulation to evaluate central and peripheral neuromuscular factors of fatigue and the subsequent recovery. Peak oxygen uptake, gas exchange threshold and the corresponding power outputs were correlated with recovery of voluntary force after the 2-min KE MVC. Regression analysis showed that power output at the gas exchange threshold alone explained 72% of the variability in ?recovery of KE voluntary force. No relationships with fatigue or recovery in EF were observed. These results suggest that participants with greater aerobic capacities experience the same amount of fatigue and faster recovery of voluntary force in KE but not EF. The potential reasons behind the relationship in KE but not EF are discussed.  相似文献   

8.
Different ambient temperatures are known to affect muscular performance based on the type of contraction. The effect of cold (10°C) and thermoneutral (TN) (24°C) ambient temperatures on finger flexor performance was examined in 12 rock climbers. After 30?min of seated rest in the designated temperature condition, participants completed maximal voluntary contractions (MVC) on a climbing-specific finger flexor assessment device equipped with a crimp grip hold. Participants then completed an intermittent fatiguing task until failure. The fatiguing task consisted of 10-s contractions at 40% MVC followed by a 3-s of rest. MVC recovery was assessed immediately, 5, 10, and 15?min post-task failure. Estimated muscle temperature and subjective thermal ratings were significantly lower throughout testing in the cold condition (P?<?.001). Finger flexor MVC strength was similar between conditions at baseline and throughout recovery. Time to task failure was significantly longer (364?±?135 vs. 251?±?97 s, P?=?.003) and force time integral was greater (53,715?±?19,988 vs. 40,243?±?15,360?Ns, P?=?.001) during the cold condition. No significant differences were found between conditions for force variability or electromyography (EMG) at the start and end of the fatiguing task. However, the rate of increase in EMG for the TN condition was significantly faster (P?=?.03). These results suggest important implications for researchers when examining climbing performance, especially in outdoor settings where temperatures may vary from day to day. Inconsistencies in testing temperatures might significantly affect muscular endurance.  相似文献   

9.
The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2?×?10?min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2 of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10?min sailing periods (430?131 vs. 285?130?N, P?<?.001 and 369?74 vs. 267?97 N, P?<?.001, respectively), but MVC was similar before, between and after the two 10?min sailing periods (878?215 vs. 852?202 vs. 844?211 130?N). In part 2, a significant positive correlation (r2?=?0.619, P?<?.01) was observed between hMVC and regatta results. In conclusion, upwind sailing in wind speeds above 12 knots causes sailing-specific fatigue as evidenced by a marked reduction in exerted hiking strap force. However, MVC of the knee extensors was not compromised ~45?s after hiking was terminated. Additionally, sailing performance is related to maximal hiking force.  相似文献   

10.
目的研究篮球运动员下肢膝关节肌力在疲劳状态下的变化,以便加强容易疲劳肌群的力量训练。方法研究选择高水平女篮11名运动员为受试者,采用等速肌力测试系统测定膝关节正常状态和疲劳状态下的屈伸肌力及做功情况。结果篮球运动员在运动中更容易导致屈肌产生疲劳,左侧下肢膝关节屈肌的总功力量存在明显差异性。结论篮球运动更容易引起膝关节屈肌产生疲劳,加强屈肌的肌肉力量训练对提高篮球运动员专项力量将有很大帮助。  相似文献   

11.
Women are known to be less fatigable than men in single-joint exercises, but fatigue induced by running has not been well understood. Here we investigated sex differences in central and peripheral fatigue and in rate of force development (RFD) in the knee extensors after a half-marathon run. Ten male and eight female amateur runners (aged 25–50 years) were evaluated before and immediately after a half-marathon race. Knee extensors forces were obtained under voluntary and electrically evoked isometric contractions. Maximal voluntary isometric contraction (MVC) force and peak RFD were recorded. Electrically doublet stimuli were delivered during the MVC and at rest to calculate the level of voluntary activation and the resting doublet twitch. After the race, decreases in MVC force (males: ?11%, effect size [ES] 0.52; females: ?11% ES 0.33), voluntary activation (males: ?6%, ES 0.87; females: ?4%, ES 0.72), and resting doublet twitch (males: ?6%, ES 0.34; females: ?8%, ES 0.30) were found to be similar between males and females. The decrease in peak RFD was found to be similar between males and females (males: ?14%, ES 0.43; females: ?15%, ES 0.14). Half-marathon run induced both central and peripheral fatigue, without any difference between men and women. The maximal and explosive strength loss was found similar between sexes. Together, these findings do not support the need of sex-specific training interventions to increase the tolerance to neuromuscular fatigue in half-marathoners.  相似文献   

12.
The present study aimed to investigate the effects of a standardized fatiguing protocol on central and peripheral fatigue in knee-flexors and knee-extensors. Thirteen healthy men (age: 23?±?3 years; height: 1.78?±?0.09 m; body-mass: 73.6?±?9.2?kg) volunteered for the present study. Maximal voluntary contraction (MVC), Electromyography (EMG) activity, voluntary activation level (VAL) as an index of central fatigue and twitch potentiation as an index of peripheral fatigue were measured before and after the fatiguing protocol. The fatiguing protocol consisted of a 0.6 duty-cycle to exhaustion (6?s isometric contraction, 4?s recovery) at 70% MVC. After the fatiguing protocol, MVC decreased in both (Effect-size (ES)?=?1.14) and knee-extensors (ES?=?1.14), and EMG activity increased in both knee-flexors (ES?=?2.33) and knee-extensors (ES?=?1.54). Decreases in VAL occurred in knee-flexors (ES?=?0.92) but not in knee-extensors (ES?=?0.04). Decreases in potentiation occurred in both knee-flexors (ES?=?0.84) and knee-extensors (ES?=?0.58). The greater central occurrence of fatigue in knee-flexors than in knee-extensors may depend on the different muscle morphology and coupled with a greater tolerance to fatigue in knee-extensors. The present data add further insight to the complicated knee-flexors-to-knee-extensors strength relationship and the mechanisms behind the different occurrence of fatigue.  相似文献   

13.
ABSTRACT

This study aimed at evaluating the effects of mental and muscle fatigue on table tennis performance. Mental fatigue (MF) was induced by completion of 90 minutes of the AX-CPT; muscle fatigue was induced by completion of an eccentric exercise performed with the elbow flexors (biceps fatigue, BF) or the knee extensors (quadriceps fatigue, QF). The control condition consisted of watching a movie. Stroke parameters (speed and accuracy of the ball), as well as feelings of fatigue and force production capacity of the elbow flexors (BF, MF and control conditions) and knee extensors (QF condition), were assessed pre and post fatigue protocols. Feelings of fatigue increased post fatigue protocols. Force production capacity decreased only in the BF and QF conditions. BF and MF induced a decrease in accuracy. This decrease in accuracy was associated with an increased ball speed in the BF condition, and a decreased ball speed in the MF condition. QF had a negligible effect on stroke performance. Our results suggest that both mental fatigue, and muscle fatigue, significantly impair table tennis performance and therefore coaches should take into account both the physical and mental state of table tennis players to optimize performance.  相似文献   

14.
Abstract

The present investigation verified that strength is improved by a training programme consisting of repetitions of maximal isometric voluntary co-contractions without increasing co-activations during contractions against external resistances. Ten participants performed 12 training sessions (four sets of 6 × 4 second maximal isometric co-contraction of the elbow flexor and extensors, 3 days a week for 4 weeks). Surface electromyograms of triceps and biceps brachii were collected during maximal voluntary isometric elbow flexion and extension against a force transducer. Maximal voluntary isometric force increased significantly after training, by 13.8 ± 6.0% (extension) and 9.6 ± 9.5% (flexion), but the observed increases in EMG of agonist muscles during maximal voluntary contraction were not significant. No significant changes in the levels of co-activation of the elbow flexors and extensors were observed. No significant change was observed for all the parameters in a control group of ten participants. These results indicated that the strength improvements after co-contraction training occur without increases in co-activation level.  相似文献   

15.
The purpose of this study was to investigate torque differences between 28 boys and 28 girls, ages 7 to 13 years, for the knee and elbow flexor and extensors at 30°/second and 120°/second using an isokinetic procedure (Cybex II). In addition, the relationships of these torque levels to size and age were determined. The results revealed significant (p < .05) sex differences for the knee flexor and extensor torque values at 120°/second independent of body weight. That is, the boys generated 29.2 and 39.5 foot pounds vs. the girl's 26.2 and 35.4 foot pounds for knee flexion and extension, respectively. Similarly, torque differences (p < .05) between boys and girls were present for elbow extension at 120°/second when adjusting for differences in height. When examining the flexion/extension ratios, it is apparent that increases in body size (height, weight) and age had a significant effect on the ratio at 120°/second but not at 30°/second.  相似文献   

16.
The aims of this study were to compare the goodness of fit and the concurrent validity of three regression models of the force–velocity relationship in a unilateral knee extension exercise. The force–velocity relationship and the one-repetition-maximum load in the dominant and non-dominant leg were obtained in 24 male sports sciences students by a progressive protocol. Additionally, the maximum voluntary contraction (MVC) of the knee extensor muscles was recorded. Individual force–velocity relationships were obtained by the linear, quadratic polynomial and exponential regression models. Although the adjusted coefficients of determination of all three models were high, the polynomial model’s coefficient was slightly but significantly higher than the rest of the models (p < 0.05), while the standard error of estimate was slightly higher for the linear than for polynomial model (p = 0.001). MVC was underestimated by F 0 calculated from the linear and polynomial models, while the maximum power was accurately estimated by the linear model. In summary, while the polynomial model revealed somewhat better fit, the linear model more accurately estimates the maximum power and provides the parameters of apparent physiological meaning. Therefore, we recommend using the linear model in research and routine testing of mechanical capacities of knee extensors.  相似文献   

17.
Analysis of lower limb work-energy patterns in world-class race walkers   总被引:1,自引:1,他引:0  
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (?49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = ?.689, P = .002). The knee flexors did most negative work (?38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.  相似文献   

18.
Abstract

This study investigated the time needed to change a motor program that specified the elbow flexor muscles to gradually increase the isometric force production from 15% to 75% of one's maximum voluntary contraction (MVC). A double-stimulation paradigm was used with the restriction that subjects (N = 12) be at 15% of their MVC before the presentation of the first stimulus. Subjects reacted to the first stimulus (randomly presented) by gradually increasing their isometric force from 15% to 75% of their MVC and then reacted to the second stimulus by altering the force production in one of four ways: (a) increasing the force to the 75% level rapidly instead of gradually, (b) discontinuing the increase and maintaining the level of force attained, (c) discontinuing all force production, or (d) reversing the direction of force so that it is produced by the elbow extensors. The data revealed that more time was needed to increase the force rapidly than to perform any of the other three conditions.  相似文献   

19.
Abstract

The effects of carbohydrate (CHO) ingestion during sports which require high levels of motor and cognitive skill, such as squash, have produced conflicting results. This study aimed to explore the effect of CHO ingestion on squash skill following short duration exercise simulating the demands of squash play. Sixteen male squash players of a high standard were recruited. Following a VO2max test, and familiarisation trial, subjects completed two further trials assessing skill pre- and post-exercise designed to simulate the demands of squash play. A squash skill test assessed accuracy of the forehand and backhand straight drives. Exercise consisted of 20 minutes of shuttle running at 82(±5)% HRmax, and 9 minutes of ghosting at 94(±4)% HRmax. Capillary blood samples (20 µl) were taken at five intervals for measurement of glucose and lactate. Cognitive function was measured with choice visual and auditory reaction time (RT) tests pre- and post-exercise, as was forearm wrist flexor MVC and fatigue profile. CHO drink (6.4% CHO) or matched placebo (PL) were administered after the initial skill test (500 ml), after the shuttle running (250 ml), and after the ghosting (250 ml) in a double blind crossover design. There was no overall effect of CHO ingestion on skill maintenance (p=0.10) however, significantly fewer balls landed outside the scoring zone (p=0.03) on the CHO ingestion trial. There was no change of visual RT pre- to post-exercise on PL (+0.01±0.03s), but a significant improvement (?0.07±0.05s) was observed in the CHO trial. Auditory RT improved pre- to post-exercise during both trials. MVC and fatigue profile of the wrist flexors was not different between trials but showed a force decrement pre- to post-exercise (p<0.05). A significant difference in blood glucose was observed between trials (p<0.01) but blood lactate response during both trials was similar. These results lend some support to a beneficial effect of CHO ingestion on skill during game sports.  相似文献   

20.
Twelve endurance athletes and six power athletes performed fatiguing isokinetic knee flexions/extensions. Isokinetic torque was recorded during the exercise. Isometric torque, cortisol and lactate responses, electromyographic (EMG) mean power frequency, average rectified value, and conduction velocity were analysed before and after the isokinetic exercise to determine correlations between electrophysiological variables and mechanical performances and/or blood concentrations of biomarkers in the two groups of athletes. The EMG variables were estimated from signals recorded from the vastus lateralis in both voluntary and electrically elicited isometric contractions. Power athletes recorded higher values than endurance athletes for the following variables: pre-exercise isometric maximal voluntary contraction (MVC), isokinetic MVC, rate of mechanical fatigue during isokinetic contractions, pre - post exercise variations and recovery times of conduction velocity and mean power frequency, and lactate concentrations. Moreover, conduction velocity overshooting was observed in endurance athletes during the recovery phase after exercise. The correlation analyses showed that the higher the rate of mechanical fatigue, the higher the lactate production and the reduction in conduction velocity due to the exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号