首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
定义以椭圆 x~2/a~2 y~2/b~2=1(a>b>0)(1)的两个焦点 F_1(-c,0)、F_2(c,0)(c=(a~2-b~2)~(1/2))及椭圆上任意一点 P(但不是长轴顶点)为顶点的△F_1PF_2,叫做椭圆的焦点三角形;以双曲线 x~2/a~2-y~2/b~2=1(a>0,b>0)(2)的两个焦点F_1(-c,0)、F_2(c,0)(c=(a~2 b~2)~(1/2))及双曲线上任意一点 P(但不是双曲线顶点)为顶点的△F_1PF_2,叫做双曲线的焦点三角形(由对称性,本文姑且设 P 在双曲线的右支上).  相似文献   

2.
圆锥曲线上一点与其两焦点构成的三角形俗称焦点三角形.本文将介绍椭圆与双曲线的焦点三角形的几个性质.1与椭圆的焦点三角形有关的性质设椭圆x_2/a_2 y_2/b_2=1(a>b>0)上任一点P,两焦点F_1(-c,0)F_2(c,0)Fc,12PFFα∠=,21PFF∠β=,12FPFθ∠=.性质12cos12eθ≥?.证明由正弦定理,有1212sinsinsinPFPFFFβαθ==.由等比性质,且考虑到122PFPFa =和122FFc=有2sinsinsinsin2sinsin()acαβαβθαβ == 2sincos222sincos22αβαβαβαβ ?= 1111coscossin222αβθθ≤== ?,即有22(1cos)/2/caθ?≤.由/eca=,整理立得:2cos12eθ…  相似文献   

3.
定义 圆锥曲线上的点与圆锥曲线两个焦点所组成的三角形叫做焦点三角形。 性质1 双曲线焦点三角形的内切圆与实轴的切点是双曲线的顶点。 证明 不妨设双曲线的方程为x~2/a~2-y~2/b~2=1,其焦点三角形的内切圆与三边的切点分别为A、B、C。其中,A_1、A_2为顶点。易知,│F_1P│-│F_2P│=│F_1C│-│F_2B│  相似文献   

4.
以圆锥曲线上一点与其两焦点为顶点的三角形叫做焦点三角形。它们有如下的面积公式: P为椭圆(x~2)/(a~2) (y~2/b~2)=1(a>b>0)上任一点,F_1、F_2是两焦点,∠F_1PF_2=θ,则 S_(△PF_1F_2)=b~2tgθ/2 (1) P为双曲线(x~2)/(a~2)-(y~2/b~2)=1上任一点,F_1、F_2是两焦点,∠F_1PF_2=θ,则  相似文献   

5.
从文献[1]中得到圆锥曲线关于三角形面积的两个结论:(1)△ABC 的三顶点均在椭圆 x~2/a~2 y~2/b~2=1(a>b>0)上,且 AB,AC 分别过焦点 F_1,F_2,则△ABC 面积的最大值为(4a~4bc)/(a~2 c~2)~2;(2)△ABC 的三顶点均在双曲线 x~2/a~2-y~2/b~2=1(a>0,b>0)上,且 AB,AC 分别过焦点 F_1,F_2,则△ABC 面积无最大值.笔者从上述两个结论得到启示,对圆锥曲线中的特殊三角形的面积进行了探索,也得出了一些有趣的结论.为了便于讨论,把圆锥曲线的焦点放在 y轴上,现将其主要结果介绍如下.结论1 如图1,已知 AB 是过椭圆 x~2/a~2 y~2/b~2=1(a>b>0)焦点 F_2(0,c)的一条弦,O 为坐标原点,(1)当 b>c 时,△OAB 面积  相似文献   

6.
定义椭圆或双曲线上一点和两焦点组成的三角形叫做焦点三角形;有一个角为直角的焦点三角形叫做焦点直角三角形.为了减少篇幅和方便叙述,先介绍几个一般性结论.性质P是椭圆x2/a2 y2/b2=1(a>c≥b>0,c是半焦距)或双曲线x2/a2-y2/b2=1(a>0,b>0,c是半焦距)上的一点,O是原点,E,F是椭圆  相似文献   

7.
以椭圆上一点与椭圆两焦点为顶点的三角形叫椭圆焦点三角形.它具有下面的一些性质.若椭圆x~2/a~2 y~2/b~2=1(a>b>)中,F_1、F_2是两焦点,P为椭圆上任一点,∠PF_1F_2=α,∠PF_2F_1=β,e为离心率,则  相似文献   

8.
<正>"三线共点"问题是双曲线中较为常见的问题.通常可以先联立两条直线方程,求出交点,再将交点坐标代入第三条直线方程中来验证.这类问题的解决往往要结合双曲线的定义、几何性质,变化较多,难度较大.下面以一道联考题引入并作一些探究.例1已知双曲线(x2)/(a2)/(a2)-(y2)-(y2)/(b2)/(b2)=1(a>0,b>0)的左,右焦点分别为F_1,F_2,过点F1作圆x2)=1(a>0,b>0)的左,右焦点分别为F_1,F_2,过点F1作圆x2+y2+y2=a2=a2的一条切线分别交双曲线的左,右  相似文献   

9.
贵刊1999年第1期刊有陈善珍老师的文章《双曲线的定义的一错误应用》。指出如下结论: 双曲线x~2/a~2-y~2/b~2=1(a>0,b>0)的过焦点F_1的弦AB长为m,另一焦点为F_2,则A、B两点在双曲线的同一支上时,△F_2AB的周长为4a 2m,而当A、B两点在双曲线的两支上时不为4A 2m。那么,当A、B在双曲线的两支时,△F_1AB  相似文献   

10.
问疑答难     
问题1.已知双曲线x~2/a~2-y~2/b~2=1(a>0,b>0)的左、右焦点分别为F_1、F_2,P为双曲线右支上任意一点,当(|PF_1|~2)/(|PF_2|)取得最小值时,求该双曲线离心率e的最大值.解:由点P在双曲线右支上,  相似文献   

11.
笔者从几个资料上均看到这样一选择题:双曲线 x~2/a~2-y~2/b~2=1(a>0,b>0)的过焦点 F_1的弦 AB 长为 m,另一焦点 F_2,则△F_2AB 的周长为( )(A)4a (B)4a-m(C)4a 2m (D)4a-2m.其参考答案均为(C).  相似文献   

12.
正圆锥曲线焦点三角形引人注目,是一个非常重要的几何量,它潜在积淀深厚的文化底蕴.笔者最近对焦点三角形内心和旁心作了深入的研究,得到了若干性质,现论述如下,供同行参考.定义椭圆和双曲线上的一点与其两个焦点组成的三角形叫做焦点三角形.1角平分线方程定理1设P是椭圆x2/a2+y2/b2=1(ab  相似文献   

13.
命题1设双曲线(x~2)/(a~2)-(y~2)/(b~2)=1的两焦点为F_1(-c,0),F_2(c,0),点P为双曲线右支上除顶点外的任意一点,∠PF_1F_2=α,∠PF_2F_1=β,则tanα/2cotβ/2=(c-a)/(c a)(*)这个命题经常作为一道解析几何习题出现,证明时往往是利用双曲线的定义、正弦定理及三角函数中有关和角公式与和差化积等知识来进行的,过程比较复杂,这里从略.  相似文献   

14.
笔者最近对椭圆和双曲线焦点三角形做了些研究 ,得到了两个十分有趣的重要的轨迹 ,现说明如下 ,供读者参考 .定义 以椭圆或双曲线上一点和两焦点组成的三角形叫焦点三角形 .1 椭圆焦点三角形内心轨迹定理 1 设P是椭圆b2 x2 +a2 y2 =a2 b2 (a >b >0 )上的一点 ,E( -c,0 )、F(c,0 )分别是左、右焦点 ,e是椭圆的离心率 ,则△PEF的内心轨迹是椭圆 x2c2 +y2( eb1 +e) 2=1 ,且该椭圆长轴与原椭圆长轴之比等于原椭圆的离心率e.证明 :设A (x ,y)是△PEF的内心 ,PA交x轴于点B ,如图1 .由三角形内角平分线性质知|BA||AP|=|EB||EP|=|FB||F…  相似文献   

15.
定理1 已知直线l是过双曲线X2/a2-y2/b2=1(a>0,b>0)上的点P(x0,Y0)的切线,直线l与双曲线的两条渐近线分别相交于A、B两点,则称△OAB是双曲线的渐近三角形,渐近三角形有如下性质……  相似文献   

16.
椭圆、双曲线上任一点与两个焦点F_1、F_2所成的三角形,常称之为焦点三角形。解焦点三角形问题经常借助于正余弦定理,并结合三角形边角关系的有关定理加以解题。解题中,经常需要通过变形,结合椭圆、双曲线的有关定义,使之出现|PF_1|+|PF_2|=2a或|PF_1|-|PF_2|=±2a,再结合有关条件,进行解题。  相似文献   

17.
本文将给出圆锥曲线焦点三角形的内(旁)切圆的两个性质及其应用.定理1.1双曲线的焦点三角形的内切圆与实轴切于顶点.证明如图1,设P是双曲线xa22-by22=1(a>0,b>0)右支上一点,⊙I是焦点三角形△PF1F2的内切圆,E1、E2、H是切点.由切线长定理,得|PE1|=|PE2|,|F1E1|=|F1H|,|F2H|=|F2  相似文献   

18.
文[1]谈了椭圆焦点三角形内心和旁心的轨迹方程,本文进一步谈双曲线焦点三角形内心和旁心的轨迹方程.设M点是双曲线xa22-yb22=1(a>0,b>0)上一点,F1(-c,0),F2(c,0)是双曲线的两个焦点,称三角形M F1F2为双曲线的焦点三角形.引理(1)设∠M F1F2=α,∠M F2F1=β,M点在双曲线右支上,则t a n2α?c o t2β=c-ac a;M点在双曲线左支上,则t a n2α?c o t2β=cc -aa.引理(2)(如图1)设M(x0,y0),△M F1F2的内心为K,连M K并延长M K交x轴于N点,则N点的横坐标xN=xa02.证明:(1)当M点在双曲线右支上时,鸐F1?s i nβ=鸐s i nFα2?s i n?(Fα1F 2?β…  相似文献   

19.
<正>焦点三角形是指以椭圆(或双曲线)的焦距F1F2为底边,顶点P在椭圆(或双曲线)上的三角形.熟练掌握焦点三角形的性质,对培养创新能力和解题能力具有重要意义.例题双曲线x29-y216=1的焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为.分析设P(x0,y0),则|y0|就是点P到x轴的距离,故只需求出点P的纵坐标即可.解法1(辅助圆法)构造以焦点F1、F2为直径的辅助圆.由圆的知识可知,若点P在圆上,则F1PF2是直角三角形;若点P在圆内,则F1PF2是钝角三角形;若点P在圆外,则F1PF2是锐角三角形.  相似文献   

20.
题目 双曲线 x29-y21 6 =1的两个焦点为F1 、F2 ,点P在双曲线上 .若PF1 ⊥PF2 ,则点P到x轴的距离是 .这是一道典型的与焦点三角形有关问题 .焦点三角形是指以椭圆 (或双曲线 )的焦距F1 F2 为底边 ,顶点P在椭圆 (或双曲线 )上的三角形 .分析 本题与 2 0 0 0年高考第1 4题类似 ,有多种思路 .设点P(x0 ,y0 ) ,则 |y0 |就是点P到x轴的距离 ,故只需求出点P的纵坐标即可 (如图 1 ) .解法 1 焦半径法在双曲线中 ,a=3,b =4,c=5.依焦半径公式知|PF1 |=53x0 3,|PF2 |=53x0 -3,由勾股定理 ,得|PF1 |2 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号