首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

2.
新教材中新增了向量的内容 ,其中两个向量的数量积有一个性质 :a→·b→=|a→|·|b→|cosθ(其中θ为向量a→ 与b→ 的夹角 ) ,则|a→·b→|=|a→|·|b→|cosθ ,又 -1 ≤cosθ≤ 1 ,则易得到以下推论 :( 1 )a→·b→ ≤|a→|·|b→| ;( 2 )|a→·b→|≤|a→|·|b→| ,( 3 )当a→ 与b→ 同向时 ,a→·b→=|a→|·|b→| ;当a→ 与b→ 反向时 ,a→·b→=-|a→|·|b→| ;( 4)当a→ 与b→ 共线时 ,|a→·b→| =|a→|·|b→|.下面举例分析说明以上推论在解不等式问题中的应用 .一、证明不等式【例 1】 已知a…  相似文献   

3.
向量及其运算是高中教材的新增内容 ,它融数、形于一体 ,具有代数形式和几何形式的“双重身份” ,使它成为中学数学知识的一个交汇点 ,成为联系多项内容的媒介 .下面举例说明向量与三角函数、解析几何、立体几何的交汇 .一、向量与三角函数的交汇例 1 已知 ,a=cos32 x ,sin32 x ,b=cos x2 ,-sin x2 且x∈ 0 ,π2 .( 1)求a·b及 |a +b| ;( 2 )求函数 f(x) =a·b -4 |a +b|的最小值 .解  ( 1)按向量运算的意义 ,有a·b=cos32 xcosx2 +sin 32 x · -sin x2=cos 32 x +x2=cos 2x .a+b =cos32 x+cos x2 ,sin32 x-sin x2 ,|a +b| =cos32 …  相似文献   

4.
正确理解和运用平面向量的数量积有助 于利用向量这一强有力的数学利器。笔者以 下着重谈一谈学习平面向量的数量积时需要 注意的几个问题,提醒同学们在学习中加以 注意. 提示1.注意区别向量的数量积a·b与 实数乘法a·b 向量的数量积a·b与实数乘法a·b有 许多不同之处,而要正确区分它们,关键是以 公式a·b=|a|·|b|cosθ为依据…  相似文献   

5.
一、考查平面向量的基本概念和运算律例1设a、b、c是任意的非零平面向量,且互不共线,给出下列四个命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中真命题有()A.①②B.②③C.③④D.②④解析①∵a、b、c互不共线,∴(a·b)c与(c·a)b分别与c、b共线,而c与b不共线,∴(a·b)c≠(c·a)b,故(a·b)c-(c·a)b=0不成立.②∵a、b、c互不共线,∴a、b、a-b可以构成三角形,∴|a|-|b|<|a-b|.③∵犤(b·c)a-(c·a)b犦·c=(b·c)a·c-(c·a)b·c=(b·c)(a·c)-(c·a)(b·c)=0,…  相似文献   

6.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

7.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

8.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性.向量是新课程中新增的内容,具有代数与几何形式的双重身份,它是新、旧知识的一个重要交汇点,成为联系这些知识的桥梁.向量与三角函数的交汇是当今高考命题的必然趋势,以下几例,重在为备考中的考生总结题型规律,探究解题策略.一、向量与三角函数性质的交汇例1已知向量a=(cos3x2,sin3x2),b=(cosx2,-sinx2),且x[0,π2].求:(1)a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-32,求λ的值.解(1)a·b=cos3x2·cosx2-sin3x2·sinx2=cos2x.|a+b|=(cos3x2+cosx2)2+(sin3x2-sinx2)2…  相似文献   

9.
任何知识体系都不是孤立的,它们相互联系相互渗透,而不同体系的“知识交汇”更能有效地培养学生的综合思维能力.向量是中学阶段的重要内容,目前大家主要重视向量与三角函数、平面几何、解析几何的“交汇”,对用向量证明代数不等式重视不够,缺少系统的研究.一般认为用向量证明不等式就是用向量模的性质:a-b≤a±b≤a+b;a1+a2+…+an≤a1+a2+…+an来思考问题,事实并非如此.本文对用向量证明代数不等式的其它方法,进行一些肤浅的探索.1利用向量的几何特征构建不等关系利用向量加法、减法所构成平行四边形的几何特征来思考问题,可使证明过程更直…  相似文献   

10.
根据向量数量积的定义:a&#183;b=|a||b|cosθ ,易得向量不等式|a&#183;b|≤|a||b|(当且仅当a,b同向,共线即b=λa(λ〉0)时取等号)。此不等式结构简单,形式优美,内涵丰富,利用它可巧妙地解决一类求函数最值和不等式证明问题。下面举例说明它的一些应用。  相似文献   

11.
对于某些不等式的证明 ,若认真分析题目的条件和结论 ,构造适当的向量 ,然后借助向量的数量积的性质|m·n|≤|m|·|n| ,往往可以使某些不等式得到证明 .例 1 已知a ,b∈R ,求证 :a +b22 ≤ a2 +b22 .证明 设m =(a ,b) ,n =( 1,1) .由 |m·n|2 ≤|m|2 ·|n|2 ,得(a +b) 2 ≤ (a2 +b2 )· 2 ,∴ a +b22 ≤ a2 +b22 .例 2 设a ,b ,c,d∈R .证明 :ac+bd≤ a2 +b2 · c2 +d2 .证明 设m =(a ,b) ,n =(c,d) .由|m·n|≤|m|·|n| ,得|ca+bd|≤ a2 +b2 ·c2 +d2 …  相似文献   

12.
两个向量夹角的定义:已知非零向量a与b,作^→OA=a,^→OB=b,则∠AOB=θ(0&#176;≤θ≤180&#176;)叫做向量a与b的夹角.两个向量的数量积定义:两个非零向量a与b的夹角为θ,我们把|a|b|cosθ叫做a与b的数量积,记作a&#183;b=|a|b|cosθ.  相似文献   

13.
向量内积公式:a&#183;b=|a|&#183;|b|cosθ(其中θ为a与b的夹角),则|a&#183;b|=|a|&#183;|b|&#183;|cosθ|.  相似文献   

14.
不等关系和相等关系是基本的数学关系,它们在数学学习与研究、应用中起着重要的作用.强调不等式及其证明的几何意义及数学背景,可以加深学生对不等式数学本质的理解.以提高学生的逻辑思维能力和分析问题解决问题能力.以柯西不等式证明为例,柯西不等式:a1,a2,b1,b2∈R,则(a1b1+a2b2)2≤(a21+a22)(b21+b22).(高中实验教材(湘教版)选修4-5)教材用构造两个向量α=(a1,a2),β=(b1,b2),由cos2<α,β>≤1得(a1b1+a2b2)2(a21+a22)(b21+b22)≤1,即(a1b1+a2b2)2≤(a21+a22)(b21+b22).教材又通过构造二次函  相似文献   

15.
文 [1]在引言中谈到 :在江苏省吴县市召开的 1999年全国不等式研究学术会议上 ,中科院成都计算机应用研究所杨路教授应用通用软件 Bottema给出以下不等式的一个“机器证明”:设 a,b,c都是正数 ,则ab c bc a ca b>2 .文 [1]中通过构造长方体给出了一个证明 ,但证明还是较繁 .事实上 ,利用二元均值不等式就可以给出一个简洁的证明 .证明  ∵ a· b c≤a b c2 ,∴ ab c=aa· b c≥ aa b c2=2 aa b c,同理可得bc a≥ 2 ba b c,  ca b≥ 2 ca b c.注意到以上三式等号不同时成立 ,故ab c bc a ca b>2一个不等式的简…  相似文献   

16.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

17.
一、选择题1.下列关系正确的是()A.A =-B B.a·b仍是一个向量C.A -A =C D.|a·b|=|a|·|b|2.若向量a、b反向,则下列等式成立的是()A.|a|-|b|=|a-b|B.|a+b|=|a-b|C.|a|+|b|=|a-b|D.|a|+|b|=|a+b|3.平面上有三个点C(2,2),M(1,3),N(7,k),若∠MCN=90°,则k的值为()A.6B.7C.8D.94.下列各组中的两个向量,其中共线的一组是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)5.若|a|=3,|b|=4,(a+b)(a+3b)=33,则a与b的夹角为()A.30°B.60°C.120°D.150°6.…  相似文献   

18.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

19.
《数学通报》2004年第3期《对一道不等式习题的再思考》一文中有如下猜想:若an bn=2,a,b∈R,n≥2,n∈N,则a b≤2,ab≤1.证明(1)若a,b中有一个为0时上述猜想显然成立.(2)当a>0且b>0时,由an bn2≥a b2n知a b2n≤1,所有a b≤2.且有ab=anbnn2≤an bn2n2=1.(3)当a<0且b<0时,此时显然有a b≤2.又由an bn=2知n必为偶数,则ab=|a||b|=|a|n|b|nn2≤|a|n |b|n2n2=an bn2n2=1.(4)当ab<0时,不妨设a>0,b<0,此时显然ab≤1成立.下证a b≤2,假设a b>2,当n为偶数时,由a b>2知a>2,则an>2n,又bn>0,则an bn>2n>2,这与an bn=2矛盾;当n为奇数时,由a b>…  相似文献   

20.
文 [1 ]给出了如下一道征解题 :设 a,b,c均为正实数 ,证明 :ab(a b) bc(b c) ca(c a)≤ 32 (a b) (b c) (c a) . (1 )它的证明方法主要是借助于几何背景 ,其证明过程也不够简单 .本文给出一种代数证明 ,其过程简捷 ,并且利用这种证法可以将(1 )推广 .证 在 (1 )的不等式两端同除以(a b) (b c) (c a)便可得 :ac a· bb c ba b· cc a   cb c· aa b≤ 32 . (2 )因此 ,我们只需证明 (2 )成立即可 ,而对于 (2 ) ,我们又可以利用基本不等式 :算术平均≥几何平均 ,故有ac a· bb c ba b· cc a   cb c· aa …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号