首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex3D flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm3) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex3D printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi‐layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ 11: 65–72. © 2017 American Association of Anatomists.  相似文献   

2.
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three‐dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73–80. © 2017 American Association of Anatomists.  相似文献   

3.
The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection‐based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin‐containing embalming fluids. This report details how additive manufacturing or three‐dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. Anat Sci Educ 7: 479–486. © 2014 American Association of Anatomists.  相似文献   

4.
Understanding the three‐dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un‐embalmed donor was scanned through high‐resolution computed tomography. The scan data underwent segmentation and post‐processing and a range of 3D‐printed anatomical models were produced. A four‐stage mixed‐methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post‐test to assess change in learner knowledge following 3D‐printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D‐printed models in small‐group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D‐image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D‐printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D‐printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection‐based teaching. Anat Sci Educ 11: 44–53. © 2017 American Association of Anatomists.  相似文献   

5.
This research effort compared and contrasted two conceptually different methods for the exploration of human anatomy in the first‐year dissection laboratory by accomplished students: “physical” dissection using an embalmed cadaver and “digital” dissection using three‐dimensional volume modeling of whole‐body CT and MRI image sets acquired using the same cadaver. The goal was to understand the relative contributions each method makes toward student acquisition of intuitive sense of practical anatomical knowledge gained during “hands‐on” structural exploration tasks. The main instruments for measuring anatomical knowledge under this conceptual model were questions generated using a classification system designed to assess both visual presentation manner and the corresponding response information required. Students were randomly divided into groups based on exploration method (physical or digital dissection) and then anatomical region. The physical dissectors proceeded with their direct methods, whereas the digital dissectors generated and manipulated indirect 3D digital models. After 6 weeks, corresponding student anatomical assignment teams compared their results using photography and animated digital visualizations. Finally, to see whether each method provided unique advantages, a visual test protocol of new visualizations based on the classification schema was administered. Results indicated that all students, regardless of gender, dissection method, and anatomical region dissected performed significantly better on questions presented as rotating models requiring spatial ordering or viewpoint determination responses in contrast to requests for specific lexical feature identifications. Additional results provided evidence of trends showing significant differences in gender and dissection method scores. These trends will be explored with further trials with larger populations. Anat Sci Ed 1:27–40, 2008. © 2007 American Association of Anatomists.  相似文献   

6.
For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on‐going. We hypothesize that three‐dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi‐colored and multi‐material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ~1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi‐colored, multi‐material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54–64. © 2017 American Association of Anatomists.  相似文献   

7.
New technological developments have frequently had major consequences for anatomy education, and have raised ethical queries for anatomy educators. The advent of three-dimensional (3D) printing of human material is showing considerable promise as an educational tool that fits alongside cadaveric dissection, plastination, computer simulation, and anatomical models and images. At first glance its ethical implications appear minimal, and yet the more extensive ethical implications around clinical bioprinting suggest that a cautious approach to 3D printing in the dissecting room is in order. Following an overview of early groundbreaking studies into 3D printing of prosections, organs, and archived fetal material, it has become clear that their origin, using donated bodies or 3D files available on the Internet, has ethical overtones. The dynamic presented by digital technology raises questions about the nature of the consent provided by the body donor, reasons for 3D printing, the extent to which it will be commercialized, and its comparative advantages over other available teaching resources. In exploring questions like these, the place of 3D printing within a hierarchical sequence of value is outlined. Discussion centers on the significance of local usage of prints, the challenges created by regarding 3D prints as disposable property, the importance of retaining the human side to anatomy, and the unacceptability of obtaining 3D-printed material from unclaimed bodies. It is concluded that the scientific tenor of 3D processes represents a move away from the human person, so that efforts are required to prevent them accentuating depersonalization and commodification.  相似文献   

8.
Advances in computer and interface technologies have made it possible to create three‐dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the human body. However, there is limited empirical evidence to guide the development and integration of effective computer models for teaching and learning. The purpose of this article is to describe the development of a dynamic head and neck model with flexible displays (2D, 3D, and stereoscopic 3D) and interactive control features that can be later used to design and test the efficacy of computer models as a means of improving student learning. The model was created using computer tomography scans of a human cadaver. Anatomical structures captured on the scans were segmented into discreet areas, and then reconstructed in three‐dimensions using specialized software. The final model consists of 70 distinct anatomical structures that can be displayed in 2D, 3D, or stereoscopic 3D. In 3D mode, a mouse can be used to actively and continuously interact with the model by manipulating viewer orientation, altering surface transparency, superimposing 2D scans with 3D reconstructions, removing or adding structures sequentially, and customizing animated scenes to show complex anatomical pathways or relationships. Anat Sci Educ 2: 294–301, 2009. © 2009 American Association of Anatomists.  相似文献   

9.
Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical spatial information were explored to overcome these limitations through the digitalization of anatomical casts of human specimens through three‐dimensional (3D) reconstruction, rapid prototype production, and Web‐based 3D atlas construction. The corrosion cast of a lung, along with its associated arteries, veins, trachea, and bronchial tree was CT‐scanned, and the data was then processed by Mimics software. Data from the lung casts were then reconstructed into 3D models using a hybrid method, utilizing both “image threshold” and “region growing.” The fine structures of the bronchial tree, arterial, and venous network of the lung were clearly displayed and demonstrated their distinct relationships. The multiple divisions of bronchi and bronchopulmonary segments were identified. The 3D models were then uploaded into a rapid prototype 3D printer to physically duplicate the cast. The physically duplicated model of the lung was rescanned by CT and reconstructed to detect its production accuracy. Gross observation and accuracy detection were used to evaluate the duplication and few differences were found. Finally, Virtual Reality Modeling Language (VRML) was used to edit the 3D casting models to construct a Web‐based 3D atlas accessible through Internet Explorer with 3D display and annotation functions. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

10.
Three-dimensional (3D) printing technology has become more affordable, accessible, and relevant in healthcare, however, the knowledge of transforming medical images to physical prints still requires some level of training. Anatomy educators can play a pivotal role in introducing learners to 3D printing due to the spatial context inherent to learning anatomy. To bridge this knowledge gap and decrease the intimidation associated with learning 3D printing technology, an elective was developed through a collaboration between the Department of Anatomy and the Makers Lab at the University of California, San Francisco. A self-directed digital resource was created for the elective to guide learners through the 3D printing workflow, which begins with a patient's computed tomography digital imaging and communication in medicine (DICOM) file to a physical 3D printed model. In addition to practicing the 3D printing workflow during the elective, a series of guest speakers presented on 3D printing applications they utilize in their clinical practice and/or research laboratories. Student evaluations indicated that their intimidation associated with 3D printing decreased, the clinical and research topics were directly applicable to their intended careers, and they enjoyed the autonomy associated with the elective format. The elective and the associated digital resource provided students with the foundational knowledge of 3D printing, including the ability to extract, edit, manipulate, and 3D print from DICOM files, making 3D printing more accessible. The aim of disseminating this work is to help other anatomy educators adopt this curriculum at their institution.  相似文献   

11.
The anatomy of the pelvis is complex, multilayered, and its three‐dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three‐dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using cryosection images obtained from the Visible Human Project, in conjunction with a general‐purpose three‐dimensional segmentation and surface‐rendering program. Anatomical areas of interest were identified and labeled on consecutive images. Each 2D slice was reassembled, forming a three‐dimensional model. The model includes the pelvic girdle, organs of the pelvic cavity, surrounding musculature, the perineum, neurovascular structures, and the peritoneum. Each structure can be controlled separately (e.g. added, subtracted, made transparent) to reveal organization and/or relationships between structures. The model can be manipulated and/or projected stereoscopically to visualize structures and relationships from different angles with excellent spatial perception. Because of its ease of use and versatility, we expect this model may provide a powerful teaching tool for learning in the classroom or in the laboratory. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

12.
3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N?=?42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers’ science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants’ science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students’ project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.  相似文献   

13.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

14.
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with intricate dissection, ventricular structures remain difficult to observe. Three-dimensional (3D) computer reconstruction of the ventricular system offers a solution to this problem. This study aims to create an accurate 3D computer reconstruction of the ventricular system with surrounding structures, including the brain and cerebellum, using commercially available 3D rendering software. Magnetic resonance imaging (MRI) scans of a male cadaver were segmented using both semiautomatic and manual tools. Segmentation involves separating voxels of different grayscale values to highlight specific neural structures. User controls enable adding or removing of structures, altering their opacity, and making cross-sectional slices through the model to highlight inner structures. Complex physiologic concepts, such as the flow of cerebrospinal fluid, are also shown using the 3D model of the ventricular system through a video animation. The model can be projected stereoscopically, to increase depth perception and to emphasize spatial relationships between anatomical structures. This model is suited for both self-directed learning and classroom teaching of the 3D anatomical structure and spatial orientation of the ventricles, their connections, and their relation to adjacent neural and skeletal structures.  相似文献   

15.
3D打印技术也称为快速成型,是一门新兴的技术。其中基于融熔沉积技术的桌面3D打印机应用日益广泛。为了使打印材料牢固的涂覆在打印机工作台表面,需要将一些利于粘附的材料贴附到3D打印机工作台表面。根据不同的打印耗材,应使用不同的贴面材料。文章分析了几种贴面材料的性能,使用方法,适用范围。并以使用PLA (聚乳酸)线材进行3D打印为例,分析了几种工作台贴面材料的优缺点。  相似文献   

16.
In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five‐step process was designed and implemented. First, 154 pelvic structures were outlined with additional surface reconstruction to prepare the image data. Second, the sectioned and outlined images (in a browsing software) as well as the surface models (in a PDF file) were placed on the Visible Korean homepage in a readily‐accessible format. Third, all image data were visualized with interactive elements to stimulate creative learning. Fourth, two‐dimensional (2D) images and three‐dimensional (3D) models were superimposed on one another to provide context and spatial information for students viewing these data. Fifth, images were designed such that structure names would be shown when the mouse pointer hovered over the 2D images or the 3D models. The state‐of‐the‐art sectioned images, outlined images, and surface models, arranged and systematized as described in this study, will aid students in understanding the anatomy of female pelvis. The graphic data accompanied by corresponding magnetic resonance images and computed tomographs are expected to promote the production of 3D simulators for clinical practice. Anat Sci Educ 6: 316–323. © 2013 American Association of Anatomists.  相似文献   

17.
The practical aspect of human developmental biology education is often limited to the observation and use of animal models to illustrate developmental anatomy. This is due in part to the difficulty of accessing human embryonic and fetal specimens, and the sensitivity inherent to presenting these specimens as teaching materials. This report presents a new approach using three-dimensional (3D) printed replicas of actual human materials in practical classes, thus allowing for the inclusion of accurate examples of human developmental anatomy in the educational context. A series of 3D prints have been produced from digital data collected by computed tomography (CT) imaging of an archived series of preserved human embryonic and fetal specimens. The final versions of 3D prints have been generated in a range of single or multiple materials to illustrate the progression of human development, including the development of internal anatomy. Furthermore, multiple copies of each replica have been printed for large group teaching. In addition to the educational benefit of examining accurate 3D replicas, this approach lessens the potential for adverse student reaction (due to cultural background or personal experience) to observing actual human embryonic/fetal anatomical specimens, and reduces the potential of damage or loss of original specimens. This approach, in combination with ongoing improvements in the management and analysis of digital data and advances in scanning technology, has enormous potential to allow embryology students access to both local and international collections of human gestational material. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists.  相似文献   

18.
A teaching tool that facilitates student understanding of a three‐dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands‐on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut‐out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low‐fidelity models. Anat Sci Educ 6: 277–280. © 2013 American Association of Anatomists.  相似文献   

19.
The use of three‐dimensional (3D) models for education, pre‐operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in reconstruction concepts, operating system requirements, user features, cost, and no one program has emerged as the standard. The purpose of this study was to conduct a systematic comparison of three widely available 3D reconstructive software programs, Amira®, OsiriX, and Mimics®, with respect to the software's ability to be used in two broad themes: morphometric research and education to translate morphological knowledge. Cost, system requirements, and inherent features of each program were compared. A novel concept selection tool, a decision matrix, was used to objectify comparisons of usability of the interface, quality of the output, and efficiency of the tools. Findings indicate that Mimics was the best‐suited program for construction of 3D anatomical models and morphometric analysis, but for creating a learning tool the results were less clear. OsiriX was very user‐friendly; however, it had limited capabilities. Conversely, although Amira had endless potential and could create complex dynamic videos, it had a challenging interface. These results provide a resource for morphometric researchers and educators to assist the selection of appropriate reconstruction programs when starting a new 3D modeling project. Anat Sci Educ 6: 393–403. © 2013 American Association of Anatomists.  相似文献   

20.
Transforming clinical imaging data for virtual reality learning objects   总被引:1,自引:0,他引:1  
Advances in anatomical informatics, three‐dimensional (3D) modeling, and virtual reality (VR) methods have made computer‐based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR “learning objects,” standardized interactive software modules for anatomical sciences education, from newer high‐resolution clinical imaging systems data. The key program is OsiriX, a free radiological image processing workstation software capable of directly reformatting and rendering volumetric 3D images. The transformed image arrays are then directly loaded into a commercial VR program to produce a variety of learning objects. Multiple types or “dimensions” of anatomical information can be embedded in these objects to provide different kinds of functions, including interactive atlases, examination questions, and complex, multistructure presentations. The use of clinical imaging data and workstation software speeds up the production of VR simulations, compared with reconstruction‐based modeling from segmented cadaver cross‐sections, while providing useful examples of normal structural variation and pathological anatomy. Anat Sci Ed 1:50–55, 2008. © 2008 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号