首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In order to compare the kinematic and kinetic effects of fatigue on the mechanics of sprint running, 15 male subjects were filmed in the saggital plane while performing a short (50 meter) maximal exertion sprint and a long (400 meter) fatiguing sprint. The short sprint was filmed at 40 meters, while the long sprint was filmed at 40 and 380 meters. The films were reduced utilizing a digitizer coupled to a computer terminal. Analysis results were generated via a human motion analysis program. Kinematic and kinetic results were entered into the statistical analysis as differences between non-fatigued and fatigued values. Initially, quality of the performance (measured by the change in horizontal velocity of the body center of gravity) was statistically related to change in the kinetic variable of integrated muscle moment at each of the body joints. The kinetic variables found to be significant were then statistically compared to logically related changes in kinematic variables (temporally adjacent or concurrent). Changes in the generated moments about the hip and knee during ground contact were found to be related to the quality of the performer. Kinematic changes related to the significant moment changes indicated that, while the better sprinter (smaller velocity loss) closely maintained the kinetic and kinematic patterns, the poorer sprinter (larger velocity loss) inefficiently deviated in both areas. The lack of significance between the changes in upper limb moments and change in average velocity indicated that productive arm effort does not affect the level of performance in the fatigued condition.  相似文献   

2.
The biomechanical profile of high-level endurance runners may represent a useful model that could be used for developing training programmes designed to improve running style. This study, therefore, sought to compare the biomechanical characteristics of high-performance and recreational runners. Kinematic and kinetic measurements were taken during overground running from a cohort of 14 high-performance (8 male) and 14 recreational (8 male) runners, at four speeds ranging from 3.3 to 5.6?m?s?1. Two-way ANOVA analysis was then used to explore group and speed effects and principal component analysis used to explore the interdependence of the tested variables. The data showed the high-performance runners to have a gait style characterised by an increased vertical velocity of the centre of mass and a flight time that was 11% longer than the recreational group. The high-performance group were also observed to adopt a forefoot strike pattern, to contact the ground with their foot closer to their body and to have a larger ankle moment. Importantly, although observed group differences were mostly independent of speed, the tested variables showed a high degree of interdependence suggesting an underlying unitary phenomenon. This is the first study to compare high-performance and recreational runners across a full range of kinematic and kinetic variables. The results suggest that high-performance runners maintain stride length with a prolonged aerial phase, rather than by landing with a more extended knee. These findings motivate future intervention studies that should investigate whether recreational runners could benefit from instruction to decrease shank inclination at foot contact.  相似文献   

3.
ABSTRACT

Successful sprinting depends on covering a specific distance in the shortest time possible. Although external forces are key to sprinting, less consideration is given to the duration of force application, which influences the impulse generated. This study explored relationships between sprint performance measures and external kinetic and kinematic performance indicators. Data were collected from the initial acceleration, transition and maximal velocity phases of a sprint. Relationships were analysed between sprint performance measures and kinetic and kinematic variables. A commonality regression analysis was used to explore how independent variables contributed to multiple-regression models for the sprint phases. Propulsive forces play a key role in sprint performance during the initial acceleration (r = 0.95 ± 0.03) and transition phases (r = 0.74 ± 0.19), while braking duration plays an important role during the transition phase (r = ?0.72 ± 0.20). Contact time, vertical force and peak propulsive forces represented key determinants (r = ?0.64 ± 0.31, r = 0.57 ± 0.35 and r = 0.66 ± 0.30, respectively) of maximal velocity phase performance, with peak propulsive force providing the largest unique contribution to the regression model for step velocity. These results clarified the role of force and time variables on sprinting performance.  相似文献   

4.
ABSTRACT

Males and females demonstrate unique running mechanics that may contribute to sex-related differences in common running related injuries. Understanding differences in muscle forces during running may inform intervention approaches, such as gait retraining addressing muscle force distribution. The purpose of this study was to compare muscle force characteristics and inter-trial variability between males and females during running. Twenty female and 14 male collegiate cross-country runners were examined. Three-dimensional kinetic and kinematic data were collected during overground running and used to estimate muscle forces via musculoskeletal modelling. Principle components analysis was used to capture the primary sources of variance from the muscle force waveforms. The magnitude of the forces for the hamstrings, gastrocnemius, and soleus muscles were higher across the majority of stance in male runners regardless of footstrike pattern. Males also demonstrated greater inter-trial variability in the timing of the peak gluteus maximus force and the magnitude of local peaks in the gastrocnemius force waveform. Male and female collegiate cross-country runners appear to employ unique lower extremity muscle force characteristics during overground running.  相似文献   

5.
Implications of intra-limb variability on asymmetry analyses   总被引:1,自引:1,他引:0  
The aim of this study was to investigate the effect of intra-limb variability on the calculation of asymmetry with the purpose of informing future analyses. Asymmetry has previously been quantified for discrete kinematic and kinetic variables; however, intra-limb variability has not been routinely included in these analyses. Synchronized lower-limb kinematic and kinetic data were collected from eight trained athletes (age 22 ± 5 years, mass 74.0 ± 8.7 kg, stature 1.79 ± 0.07 m) during maximal velocity sprint running. Asymmetry was quantified using a modified version of the symmetry angle for selected kinematic and kinetic variables. Significant differences (P < 0.05) between left and right values for each variable were calculated to indicate intra-limb variability relative to between-limb differences. Significant asymmetry was present in only 39% of kinematic variables and 23% of kinetic variables analysed. Large kinetic asymmetry values (>90%) were calculated for some athletes that were not significant, due to large intra-limb variability. Variables that displayed significant asymmetry were athlete-specific. Findings highlight the potential for misleading results if intra-limb variability is not included in asymmetry analyses. The exclusion of asymmetry scores for variables not displaying significant asymmetry will be useful when calculating overall asymmetry for different participants and could be applied to future running gait analyses.  相似文献   

6.
Abstract

Gyro sensor has been used to measure foot pronation during running with reliable results in previous studies, and the signals were not affected by the vibration of heel strikes. The purpose of this study was to observe the kinematic changes of the foot during intense running using a 3-axis gyro sensor. Fifteen male participants (average age: 24.5 ± 1.7 years; mean height: 174.1 ± 3.3 cm; mean body weight: 71.0 ± 5.5 kg) were recruited in this study. Foot kinematic changes were observed in 30-min intense running protocols. The comparisons of the signals from gyro and motion analysis system were also performed to determine the accuracy of the gyro and showed positive results. In the main experiment, the ankle range of motion (ROM) in the frontal plane, measured using a motion system, showed a significant increase over time. Accordingly, peak angular velocity in the frontal plane also showed a significant increase. The correlation between ankle ROM and peak angular velocity in the frontal plane is significantly high (= 0.975). Moreover, peak angular velocity in the frontal plane is also significantly correlated with both rate of perceived exertion (RPE) (= 0.911) and heart rate (= 0.960). This study concluded that an alarm system for foot kinematic changes related to running injuries can be built based on the peak angular velocity of the foot in the frontal plane.  相似文献   

7.
The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s?1. A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex–age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh–shank transverse plane couple but greater coordination variability for the shank rotation–foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.  相似文献   

8.
To assess the effectiveness of breast support previous studies monitored breast kinematics and kinetics, subjective feedback, muscle activity (EMG), ground reaction forces (GRFs) and physiological measures in isolation. Comparing these variables within one study will establish the key performance variables that distinguish between breast supports during activities such as running. This study investigates the effects of changes in breast support on biomechanical, physiological and subjective measures during running. Ten females (34D) ran for 10 min in high and low breast supports, and for 2 min bare breasted (2.8 m·s?1). Breast and body kinematics, EMG, expired air and heart rate were recorded. GRFs were recorded during 10 m overground runs (2.8 m·s?1) and subjective feedback obtained after each condition. Of the 62 variables measured, 22 kinematic and subjective variables were influenced by changes in breast support. Willingness to exercise, time lag and superio-inferior breast velocity were most affected. GRFs, EMG and physiological variables were unaffected by breast support changes during running. Breast displacement reduction, although previously advocated, was not the most sensitive variable to breast support changes during running. Instead breast support products should be assessed using a battery of performance indicators, including the key kinematic and subjective variables identified here.  相似文献   

9.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

10.
Abstract

In an effort to investigate the force-time characteristics during the acceleration phase of the sprint start, eight male sprinters were used as subjects. Runs up to 3 m were analyzed from film, and force-time parameters were measured on a force platform. In a starting stance the reaction time of the group was .118 ± .016 s and the force production lasted .342 ± .022 s. The maximal resultant force at the moment of maximal horizontal force was 19.3 ± 2.2 N x kg1, and the direction of the force was 32 ± 7°. In the very last instant before leaving the blocks the velocity of the center of gravity was 3.46 ± .32 m x s?1. In the first contact after leaving the blocks there was a braking phase (.022 ± .005 s in duration) during which the average horizontal force was ?153 ± 67 N. The braking phase was observed despite the body center of gravity being horizontally ahead by .13 ± . 05 m with respect to the first contact point. The percentage of deceleration in running velocity during that phase was 4.8 ± 2.9%. In the propulsion phase the average horizontal force was great (526 ± 75 N), and it was produced for a relatively long time (.171 ± .035 s). Significant correlation coefficients were observed between force production and running velocity. These results suggest that braking/propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start.  相似文献   

11.
The aim of the study was to determine if sex differences exist in the key elbow and wrist joint injury risk factors during different cartwheel (CW) and round-off (RO) techniques performed by young male and female artistic gymnasts. Sixteen active young gymnasts (8 males and 8 females) performed 30 successful trials of CW and RO with three different hand positions (parallel (10), T-shape (10) and reverse (10)). Synchronised kinematic and kinetic data were collected for each trial. Two-way repeated measures ANOVA (3 × 2, technique × sex) and effect-sizes (ES) were used for statistical analysis. In conclusion, female gymnasts exhibited greater normalised peak vertical ground reaction forces (VGRF), elbow and wrist compression forces and elbow internal adduction moments during CW and RO skills compared with male gymnasts. In both sexes, the parallel and reverse techniques increased peak VGRF, elbow and wrist compression forces and the elbow internal adduction moment. Increased elbow flexion resulted in decreased peak VGRF, elbow compression forces and elbow internal adduction moment. Injury risk factors including elbow extension and internal adduction moment with axial compression force suggest that a CW and RO in reverse and parallel techniques can be hazardous especially for young female gymnasts.  相似文献   

12.
ABSTRACT

Wearable resistance training involves added load attached directly to the body during sporting movements. The effects of load position during running are not yet fully established. Therefore, the purpose of this research was to determine spatio-temporal and kinetic characteristics during submaximal running using upper, lower and whole-body wearable resistance (1–10% body mass (BM)). Twelve trained male runners completed eight 2-min treadmill running bouts at 3.9 m/s with and without wearable resistance. The first and last bouts were unloaded, while the middle 6 were randomised wearable resistance conditions: upper body (UB) 5% BM, lower body (LB) 1%, 3%, 5% BM and whole body (WB) 5%, 10% BM. Wearable resistance of 1–10% BM resulted in a significant increase in heart rate (5.40–8.84%), but minimal impact on spatio-temporal variables. Loads of 5% BM and greater caused changes in vertical stiffness, vertical and horizontal force, and impulse. Functional and effective propulsive force (2.95%, 2.88%) and impulse (3.40%, 3.38%) were significantly (p < 0.05) greater with LB5% than UB5%. Wearable resistance may be used to increase muscular kinetics during running without negatively impacting spatio-temporal variables. The application of these findings will vary depending on athlete goals. Future longitudinal studies are required to validate training contentions.  相似文献   

13.
The aims of this study were to determine if there are significant kinematic changes in running pattern after intense interval workouts, whether duration of recovery affects running kinematics, and whether changes in running economy are related to changes in running kinematics. Seven highly trained male endurance runners (VO 2max = 72.3 +/- 3.3 ml kg -1 min -1 ; mean +/- s) performed three interval running workouts of 10 X 400 m at a speed of 5.94 +/- 0.19 m s -1 (356 +/- 11.2 m min -1 ) with a minimum of 4 days recovery between runs. Recovery of 60, 120 or 180 s between each 400 m repetition was assigned at random. Before and after each workout, running economy and several kinematic variables were measured at speeds of 3.33 and 4.47 m s -1 (200 and 268 m min -1 ). Speed was found to have a significant effect on shank angle, knee velocity and stride length (P ? 0.05). Correlations between changes pre- and post-test for VO 2 (ml kg -1 min -1 ) and several kinematic variables were not significant (P > 0.05) at both speeds. In general, duration of recovery was not found to adversely affect running economy or the kinematic variables assessed, possibly because of intra-individual adaptations to fatigue.  相似文献   

14.
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents’ net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (< 0.001) and underhand (< 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (= 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.  相似文献   

15.
Abstract

This study investigated the effects of sex and athletic status on reaction latencies and movement time. One hundred subjects, categorized into five groups of 20 subjects each—male athletes (MA), female athletes (FA), male nonathletes (MNA), female nonathletes (FNA), and control group (CG)—were tested over a period of five consecutive days. Several different types of incentives were used to ensure that subjects provided the fastest times possible. Two blocks of 25 trials were administered to each subject on each day. A 2 × 2 × 2 × 5 × 2 mixed factorial analysis of variance was used to test for between-subject differences of group (experimental/control), sex, and athletic status and for within-subject differences of days and blocks. The four dependent variables were reaction time (RT) mean, RT consistency, movement time (MT) mean, and MT consistency. Results did not support the classic finding of male superiority over females in RT/MT or athletes' superiority over nonathletes. Evidence of athletic superiority emerged, but for the first day of practice only. As subjects were allowed extended practice over a 5-day test period in which knowledge of results (KR) and other incentives were provided, differences in the experimental groups disappeared. Sex was the predominant factor in consistency, with males being less variable in RT (p = .02) performance than females. There were no sex differences in MT consistency.  相似文献   

16.
Kinetic (3-D force plate), kinematic (videography) and temporal characteristics of backstroke turns by 20 male and 16 female swimmers were recorded to identify and describe key elements of backstroke turning performance. Data were recorded during a 50 m maximum effort swim in a 25 metre pool. A Pearson product moment correlation matrix revealed that the 5 m RTT was significantly correlated with anthropometric measures of height, mass, trochanteric height and age; kinetic measures of horizontal impulse and peak force; and kinematic measures of wall contact time and peak velocity. The stepwise multiple regression equation to predict 5 m RTT was: 19.6-0.75 trochanteric height-1.8 wall exit velocity-0.03 peak vertical force. Four key factors were identified from a principle components factor analysis--anthropometry and force, post-turn velocity, force preparation and rotational skills. Implications from the findings were that age-group backstrokers should 'hit the wall hard' with relatively extended legs to reduce swim distance and push-off deceleration; use minimal wall contact time, and maximise forces to develop high horizontal velocities in a streamlined position.  相似文献   

17.
The purpose of this study was to quantify the reliability of kinematic and kinetic variables using a sample of pre-peak-height-velocity (PHV) male athletes sprinting on a non-motorised treadmill. Following variables were measured and their normative data presented, average and peak velocity, average and peak power, average and peak horizontal force, average and peak vertical force, average step frequency, average step length, average work. Twenty-five participants performed three 5-s all-out sprints from a standing split start on a non-motorised treadmill on three separate occasions. Per cent change in the means (-3.66 to 3.35%) and coefficients of variation (0.56–7.81%) were thought reliable for all variables. However, average step rate, average horizontal force and average vertical force did not meet the standards (≥0.70) set for acceptable intraclass correlation coefficients (ICC). Due to the homogeneous group, it was expected to receive low ICC values. Therefore, youth sprinting performance can be tested reliably on a non-motorised treadmill, especially if the per cent change in the mean and CV are deemed the important reliability measures. Normative data are given for the participant’s age as well as their maturity level for kinematic and kinetic variables.  相似文献   

18.
BackgroundNumerous studies about the interaction between footwear (and barefoot) and kinematic and kinetic outcomes have been published over the last few years. Recent studies however lead to the conclusion that the assumed interactions depend mainly on the subjects' experience of barefoot (BF) walking/running, the preferred running strike pattern, the speed, the hardness of the surface, the thickness of the midsole material, and the runners' level of ability. The aim of the present study was to investigate lower leg kinematics of BF running and running in minimal running shoes (MRS) to assess comparability of BF kinematics in both conditions. To systematically compare both conditions we monitored the influencing variables described above in our measurement setup. We hypothesized that running in MRS does not alter lower leg kinematics compared to BF running.MethodsThirty-seven subjects, injury-free and active in sports, ran BF on an EVA foam runway, and also ran shod wearing Nike Free 3.0 on a tartan indoor track. Lower-leg 3D kinematics was measured to quantify rearfoot and ankle movements. Skin markers were used in both shod and BF running.ResultsAll runners revealed rearfoot strike pattern when running barefoot. Differences between BF and MRS running occurred particularly during the initial stance phase of running, both in the sagittal and the frontal planes. BF running revealed a flatter foot placement, a more plantar flexed ankle joint and less inverted rearfoot at touchdown compared to MRS running.ConclusionBF running does not change the landing automatically to forefoot running, especially after a systematic exclusion of surface and other influencing factors. The Nike Free 3.0 mimics some BF features. Nevertheless, changes in design of the Nike Free should be considered in order to mimic BF movement even more closely.  相似文献   

19.
Abstract

An investigation was undertaken to determine possible age and race difference between Black and Caucasian girls ages 6, 7, and 8 years. Ninety female subjects were administered 28 test items measuring speed, muscular power, agility, flexibility, balance, muscular endurance, and cardiorespiratory endurance. Few significant differences were observed between adjacent ages but 8-year-old females were significantly superior to the 6-year-old subjects on most motor performance variables utilized. For race comparisons, no significant differences were noted for measures of flexibility, muscular endurance, cardiorespiratory endurance, speed, balance, or muscular power. The Black subjects were significantly superior on two measures of agility while the Caucasian subjects performed significantly better on the time-limit shuttle run and grip strength.  相似文献   

20.
Abstract

The purpose of this study was to determine the relationship between female distance running performance on a 10 km road race and body composition, maximal aerobic power ([Vdot]O2 max ), running economy (steady-state [Vdot]O2 at standardized speeds), and the fractional utilization of [Vdot]O2max at submaximal speeds (% [Vdot]O2max ). The subjects were 14 trained and competition–experienced female runners. The subjects averaged 43.7 min on the 10 km run, 53.0 ml · kg?1 · min?1 on [Vdot]O2max , and 33.9, 37.7, and 41.8 ml · kg?1 · min?1 for steady-state [Vdot]O2 at three standardized running paces (177, 196, and 215 m · min?1). The mean values for fractional utilization of aerobic capacity for these three submaximal speeds were 64.3, 71.4, and 79.3% [Vdot]O2max , respectively. Significant (p < 0.01) relationships with performance were found for [Vdot]O2max (r = ?0.66) and % [Vdot]O2max at a standardized speed (r = 0.65). No significant (p > 0.05) relationships were found between running performance and either running economy or relative body fat. As with male heterogeneous groups, trained female road racing performance is significantly related to [Vdot]O2max and % [Vdot]O2max , but not related to body composition or running economy. It was further concluded that on a 10 km road race, trained females operate at a % [Vdot]O2max similar to that of their trained male counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号