首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FINA recently approved the backstroke ledge (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare the mechanics of starts performed with and without the OBL2. Ten high-level backstroke swimmers performed three starts with, and three starts without, the OBL2. A wall-mounted force plate measured the lower limb horizontal impulse, vertical impulse, take-off velocity and take-off angle. Entry distance, time to 10 m and start of hip and knee extension were recorded using video cameras. Starts performed with the OBL2 had a 0.13 s lower time to 10 m, 2.5% less variability in time to 10 m and 0.14 m greater head entry distance. The OBL2 provides a performance advantage by allowing an increased head entry distance rather than larger horizontal impulse on the wall. This may be due to the swimmers assuming different body positions during the start manoeuvre. Additional studies are needed to evaluate factors that contribute to improved performance when using the OBL2. Swimmers should train with the OBL2 and use it in competition to ensure optimal start performance.  相似文献   

2.
The purpose of this study was to determine the installation of the backstroke start device reduces 15-m time. Thirteen college swimmers participated in this study. The aerial start and underwater motions were recorded with two digital video cameras. The center of mass (CM) of the swimmer, angular displacements and velocities of the shoulder, hip and knee joints were calculated. As an indicator of performance, the 5- and 15-m times were measured. The 5- and 15-m times in the backstroke start device condition were significantly shorter than in the non-backstroke start device condition. The vertical velocities of the CM at hand-off and toe-off in the backstroke start device condition were significantly greater than in the non-backstroke start device condition, while there was no significant difference in the CM horizontal velocity at toe-off. As a result, the height of the great trochanter at entry of the fingertips, with the backstroke start device, was 15 cm higher than in the non-backstroke start device condition. In addition, the CM horizontal velocities at 5 m in the backstroke start device condition were significantly greater than those of the non-backstroke start device. Thus, the use of the backstroke start device may reduce the 15-m time by diminution of the entry area.  相似文献   

3.
We aimed to analyse the handgrip positioning and the wedge effects on the backstroke start performance and technique. Ten swimmers completed randomly eight 15 m backstroke starts (four with hands on highest horizontal and four on vertical handgrip) performed with and without wedge. One surface and one underwater camera recorded kinematic data. Standardised mean difference (SMD) and 95% confidence intervals (CI) were used. Handgrip positioning did not affect kinematics with and without wedge use. Handgrips horizontally positioned and feet over wedge displayed greater knee angular velocity than without it (SMD = ?0.82; 95% CI: ?1.56, ?0.08). Hands vertically positioned and feet over wedge presented greater take-off angle (SMD = ?0.81; 95% CI: ?1.55, ?0.07), centre of mass (CM) vertical positioning at first water contact (SMD = ?0.97; 95% CI: ?1.87, ?0.07) and CM vertical velocity at CM immersion (SMD = 1.03; 95% CI: 0.08, 1.98) when comparing without wedge use. Swimmers extended the hip previous to the knee and ankle joints, except for the variant with hands vertically positioned without wedge (SMD = 0.75; 95% CI: ?0.03, 1.53). Swimmers should preserve biomechanical advantages achieved during flight with variant with hands vertically positioned and wedge throughout entry and underwater phase.  相似文献   

4.
The purpose of this study was to quantify the reliability of kinematic and kinetic variables using a sample of pre-peak-height-velocity (PHV) male athletes sprinting on a non-motorised treadmill. Following variables were measured and their normative data presented, average and peak velocity, average and peak power, average and peak horizontal force, average and peak vertical force, average step frequency, average step length, average work. Twenty-five participants performed three 5-s all-out sprints from a standing split start on a non-motorised treadmill on three separate occasions. Per cent change in the means (-3.66 to 3.35%) and coefficients of variation (0.56–7.81%) were thought reliable for all variables. However, average step rate, average horizontal force and average vertical force did not meet the standards (≥0.70) set for acceptable intraclass correlation coefficients (ICC). Due to the homogeneous group, it was expected to receive low ICC values. Therefore, youth sprinting performance can be tested reliably on a non-motorised treadmill, especially if the per cent change in the mean and CV are deemed the important reliability measures. Normative data are given for the participant’s age as well as their maturity level for kinematic and kinetic variables.  相似文献   

5.
Abstract

High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.  相似文献   

6.
The aims of this study were (1) to evaluate the different turn phases of 200 m butterfly during competition in a 50 m pool, (2) to determine if wall contact times are related to swim speed and (3) to compare the turn variables of a European Champion with other swimmers. In the first part of the study, we assessed the turns of 22 swimmers ranked in three groups according to 200 m butterfly swim performance (fast group = 121.73 - 3.03 s, intermediate group = 126.25 - 0.55 s, slow group = 129.24 - 2.30 s). Two turn times were recorded: the first before the turn (i.e. the time it takes the swimmer's head to reach the wall from 7.5 m away) and the second after the turn (i.e. the time from the wall to the point at which the swimmer's head passes 7.5 m away). The third turn was performed significantly faster by the fast group than by the slow group, both before ( P ? 0.01) and after ( P ? 0.02) the turn. In the second part of the study, objectives (2) and (3) were evaluated among 15 swimmers based on a specific protocol. Three cameras (50 Hz) simultaneously recorded the turn; these were placed above the water 10 m before the wall, 5 m before and just above the wall. Longer contact times of the feet on the wall were associated with a faster push-off speed ( P ? 0.02). The European Champion achieved an improved contact time while performing a rapid pull-out speed.  相似文献   

7.
The aims of this study were (1) to evaluate the different turn phases of 200 m butterfly during competition in a 50 m pool, (2) to determine if wall contact times are related to swim speed and (3) to compare the turn variables of a European Champion with other swimmers. In the first part of the study, we assessed the turns of 22 swimmers ranked in three groups according to 200 m butterfly swim performance (fast group = 121.73+/-3.03 s, intermediate group = 126.25+/-0.55 s, slow group = 129.24+/-2.30 s). Two turn times were recorded: the first before the turn (i.e. the time it takes the swimmer's head to reach the wall from 7.5 m away) and the second after the turn (i.e. the time from the wall to the point at which the swimmer's head passes 7.5 m away). The third turn was performed significantly faster by the fast group than by the slow group, both before (P< 0.01) and after (P< 0.02) the turn. In the second part of the study, objectives (2) and (3) were evaluated among 15 swimmers based on a specific protocol. Three cameras (50 Hz) simultaneously recorded the turn; these were placed above the water 10 m before the wall, 5 m before and just above the wall. Longer contact times of the feet on the wall were associated with a faster push-off speed (P < 0. 02). The European Champion achieved an improved contact time while performing a rapid pull-out speed.  相似文献   

8.
ABSTRACT

Successful sprinting depends on covering a specific distance in the shortest time possible. Although external forces are key to sprinting, less consideration is given to the duration of force application, which influences the impulse generated. This study explored relationships between sprint performance measures and external kinetic and kinematic performance indicators. Data were collected from the initial acceleration, transition and maximal velocity phases of a sprint. Relationships were analysed between sprint performance measures and kinetic and kinematic variables. A commonality regression analysis was used to explore how independent variables contributed to multiple-regression models for the sprint phases. Propulsive forces play a key role in sprint performance during the initial acceleration (r = 0.95 ± 0.03) and transition phases (r = 0.74 ± 0.19), while braking duration plays an important role during the transition phase (r = ?0.72 ± 0.20). Contact time, vertical force and peak propulsive forces represented key determinants (r = ?0.64 ± 0.31, r = 0.57 ± 0.35 and r = 0.66 ± 0.30, respectively) of maximal velocity phase performance, with peak propulsive force providing the largest unique contribution to the regression model for step velocity. These results clarified the role of force and time variables on sprinting performance.  相似文献   

9.
The aim of this study was to examine the effects of muscle-tendon length on joint moment and power during maximal sprint starts. Nine male sprinters performed maximal sprint starts from the blocks that were adjusted either to 40 degrees or 65 degrees to the horizontal. Ground reaction forces were recorded at 833 Hz using a force platform and kinematic data were recorded at 200 Hz with a film camera. Joint moments and powers were analysed using kinematic and kinetic data. Muscle - tendon lengths of the medial gastrocnemius, soleus, vastus medialis, rectus femoris and biceps femoris were calculated from the set position to the end of the first single leg contact. The results indicated that block velocity (the horizontal velocity of centre of mass at the end of the block phase) was greater (P < 0.01) in the 40 degrees than in the 65 degrees block angle condition (3.39 +/- 0.23 vs. 3.30 +/- 0.21 m . s(-1)). Similarly, the initial lengths of the gastrocnemius and soleus of the front leg in the block at the beginning of force production until half way through the block phase were longer (P < 0.001) in the 40 degrees than in the 65 degrees block angle condition. The initial length and the length in the middle of the block phase were also longer in the 40 degrees than in the 65 degrees block angle condition both for both the gastrocnemius (P < 0.01) and soleus (P < 0.01-0.05) of the rear leg. In contrast, the initial lengths of the rectus femoris and vastus medialis of the front leg were longer (P < 0.05) in the 65 degrees than in the 40 degrees block angle condition. All differences gradually disappeared during the later block phase. The peak ankle joint moment (P < 0.01) and power (P < 0.05) during the block phase were greater in the 40 degrees than in the 65 degrees block angle condition for the rear leg. The peak ankle joint moment during the block phase was greater (P < 0.05) in the 40 degrees block angle for the front leg, whereas the peak knee joint moment of the rear leg was greater (P < 0.01) in the 65 degrees block angle condition. The results suggest that the longer initial muscle-tendon lengths of the gastrocnemius and soleus in the block phase at the beginning of force production contribute to the greater peak ankle joint moment and power and consequently the greater block velocity during the sprint start.  相似文献   

10.
Abstract

The objective of this study was to determine the relationship between different variables measured with a force plate during the swimming start push-off phase and start performance presented by times to 5, 10 and 15?m. Twenty-one women from the Slovenian national swimming team performed two different swim starts (freestyle and undulatory) on a portable force plate to a distance further than 15?m. Correlations between push-off variables and times to 5, 10 and 15?m were quantified through Pearson's product-moment correlation coefficient (r). The variables that significantly correlated (p?<?.05) to all times measured in the two starts performed were: average horizontal acceleration (freestyle: r?=??0.58 to ?0.71; and undulatory: r?=??0.55 to ?0.66), horizontal take-off velocity (freestyle: r?=??0.56 to ?0.69; and undulatory: r?=??0.53 to ?0.67) and resultant take-off velocity (freestyle: r?=??0.53 to ?0.65; and undulatory: r?=??0.52 to ?0.61). None of the variables derived from the vertical force were correlated to swimming start performance (p?>?.05). Based on the results of this study, we can conclude that horizontal take-off velocity and average horizontal acceleration (calculated as the average horizontal force divided by swimmer's body mass) are the variables most related to swimming start performance in experienced swimmers, and therefore could be the preferred measures to monitor swimmers’ efficiency during the push-off phase.  相似文献   

11.
殷剑侠  仲宇 《体育科技》2010,31(4):52-55,60
通过对运动员两种仰泳出发技术的预备姿势、离台阶段、腾空阶段、入水阶段和头到达指定距离的时间进行了有关运动学特征的比较和分析。结果表明,脚出水面仰泳出发技术的预备姿势重心高,离壁角度大,离壁速度快,双手空中移动速度快,手入水距离远,入水角度较小;从水下滑行到5m、7.5m段的时间看,脚出水面仰泳出发技术的优势明显,脚出水面的仰泳出发技术优于脚不出水面的仰泳出发技术。  相似文献   

12.
This study aimed to determine if starting with the feet above the water (FAW) in male backstroke swimming resulted in faster start times (15-m time) than when the feet were underwater (FUW). It was hypothesised that setting higher on the wall would generate increased horizontal force and velocity, resulting in quicker starts. Twelve high-level male backstrokers performed three trials of the FAW and FUW techniques. A biomechanical swimming testing system comprising one force plate (1,000 Hz), four lateral-view (100 Hz), and five overhead (50 Hz) video cameras captured the swimmers' performance. Data for each participant's fastest trial for each technique were collated, grouped, and statistically analysed. Analysis included Wilcoxon, Spearman Rho correlation, and regression analysis. Wilcoxon results revealed a significantly faster start time for the FAW technique (p < 0.01). Peak horizontal force was significantly smaller for FAW (p = 0.02), while take-off horizontal velocity was significantly greater (p = 0.01). Regression analysis indicated take-off horizontal velocity to be a good predictor of start time for both techniques, and the horizontal displacement of the centre of mass for the FAW start.  相似文献   

13.
The response of heel-toe runners to changes in cushioning of the impact interface was investigated. Ground reaction force and sagittal plane kinematic data were collected for six heel-toe runners performing barefoot running trials on a conventional asphalt surface and an asphalt surface with additional cushioning. Statistical analysis indicated that similar peak impact force values were maintained when running on the two surfaces (p < 0.1). When running on the less cushioned surface, significant reductions were detected in ankle dorsi-flexion angle immediately prior to ground impact and peak ankle plantar-flexion velocity immediately following impact (p > 0.1). In addition, individual subjects demonstrated reductions in heel velocity and increases in knee flexion immediately prior to ground contact. The observed reduction in ankle dorsiflexion at impact, resulting in a flatter foot at ground contact, supports previous suggestions that this is a strategy to reduce local plantar pressure loads. The additional use of adjustments in heel velocity and initial knee flexion highlights the ability of some subjects to adopt compensatory measures to reduce peak impact loading. However, some subjects appear unable to make these adjustments, resulting in higher impact loading on the less cushioned surface for these subjects. This study provides experimental evidence to support the theoretical potential of heel impact velocity and initial knee flexion to influence impact loading in running.  相似文献   

14.
During backstroke, an optimum shoulder entry angle of 180° has been anecdotally suggested; however, this has yet to be investigated biomechanically. The aim of this study was to quantify shoulder entry angles for advanced and intermediate backstroke swimmers. Six advanced (season's best?<150?s) and six intermediate (season's best?>160?s) 200-m backstroke swimmers had markers applied to the medial humeral epicondyles and glenoid cavities. Following a familarization period, participants completed backstroke swimming trials (90?s each) in a swimming flume at 50%, 60%, 70%, and 80% of their season's best 200-m velocity. A camera positioned above the flume recorded frontal plane motion, which was digitized and analysed in Simi Motion Systems. The mean peak angle between the upper arm and the line of progression was established in ten strokes for each participant. The results showed backstroke shoulder entry angles for advanced swimmers (170°) were significantly closer to the suggested optimum 180° compared with those of intermediate swimmers (161°). The non-dominant arm displayed values closer to the optimum (171°), while swimming speed had no effect on backstroke shoulder entry angle. In conclusion, backstroke shoulder entry angle may help discriminate between advanced and intermediate backstroke swimmers and may be influenced by laterality dominance, being independent of swimming speed.  相似文献   

15.
Gymnastics     
The 16 highest‐scored Roche vaults (G1) performed during the 2000 Olympic Games were compared with those receiving the 16 lowest‐scores (G2). A 16‐mm motion picture camera operating at 100 Hz recorded the vaults during the competition. The results of t tests (p < .05) indicated G1, compared to G2, had (a) shorter time of board support, greater normalised average upward vertical force and backward horizontal force exerted by the board, greater change in the vertical velocity while on the board, and greater vertical velocity at board take‐off, (b) comparable linear and angular motions in pre‐flight, (c) smaller backward horizontal impulse exerted by the horse, smaller loss of the horizontal velocity while on the horse, and greater horizontal and vertical velocities at horse take‐off, (d) greater height and larger horizontal distance of post‐flight, (e) higher body mass centre at knee release, and (f) higher mass centre, greater normalised moment of inertia, and smaller vertical velocity at mat touchdown. Therefore, gymnasts and coaches should focus on sprinting the approach; blocking and pushing‐off the take‐off board rapidly and vigorously; departing the board with a large vertical velocity; exerting large downward vertical force and small forward horizontal force from the handstand position while on the horse; departing the horse with large horizontal and vertical velocities; and completing the majority of the double salto forward near the peak of trajectory and releasing the knees above the top of the horse to prepare for a controlled landing.  相似文献   

16.
The 16 highest-scored Roche vaults (G1) performed during the 2000 Olympic Games were compared with those receiving the 16 lowest-scores (G2). A 16-mm motion picture camera operating at 100 Hz recorded the vaults during the competition. The results of t tests (p < .05) indicated G1, compared to G2, had (a) shorter time of board support, greater normalised average upward vertical force and backward horizontal force exerted by the board, greater change in the vertical velocity while on the board, and greater vertical velocity at board take-off, (b) comparable linear and angular motions in pre-flight, (c) smaller backward horizontal impulse exerted by the horse, smaller loss of the horizontal velocity while on the horse, and greater horizontal and vertical velocities at horse take-off, (d) greater height and larger horizontal distance of post-flight, (e) higher body mass centre at knee release, and (f) higher mass centre, greater normalised moment of inertia, and smaller vertical velocity at mat touchdown. Therefore, gymnasts and coaches should focus on sprinting the approach; blocking and pushing-off the take-off board rapidly and vigorously; departing the board with a large vertical velocity; exerting large downward vertical force and small forward horizontal force from the hand-stand position while on the horse; departing the horse with large horizontal and vertical velocities; and completing the majority of the double salto forward near the peak of trajectory and releasing the knees above the top of the horse to prepare for a controlled landing.  相似文献   

17.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

18.
ABSTRACT

When new protocols are developed, there is a requirement to investigate test–retest reliability of measures for valid use and interpretation of data in research and practice. Therefore, the aim of this investigation was to determine the inter-day reliability of the cable put and seated rotation assessment protocols. On three occasions, nine resistance-trained men performed cable puts and cable rotations at different loads between 6 and 42 kg on a commercially available cable cross over machine. Load stack movement was recorded using a PT5A linear position transducer from which all kinematic and kinetic variables were calculated. Reliability was excellent for peak velocity and displacement based on intraclass correlation coefficient (ICC) and coefficient of variation (CV) across the majority of loads and movements (cable put: ICC = 0.92 to 0.99, CV = 3.1% to 8.6%; cable seated rotation: ICC = 0.76 to 0.99, CV = ?1.7% to 16.1%). However, kinetic variables demonstrated inadequate reliability across the majority of days, loads and movements (ICC = 0.70, CV >10%). It was concluded that peak velocity is a reliable kinematic measure to assess muscular capability from cable put and seated rotation protocols; however, kinetic measures are too variable to provide reliable outputs across testing occasions.  相似文献   

19.
This study aimed to compare the power produced by the flutter-kick action at different swimming velocities. Eighteen high-level male swimmers completed a maximal 15-m flutter-kicking sprint and underwent two tests (one passive and one with maximal flutter-kicking) in which they were towed at six velocities ranging from 1.0 to 2.0 m/s. Power values were computed for each velocity, and selected kinematic indices were evaluated at 1.2 and 2.0 m/s. The highest power (54 ± 8 W) was observed at the velocity at which the drag equaled the propulsive force (1.27 ± 0.08 m/s), which was similar to that recorded in the flutter-kicking sprint (1.26 ± 0.09 m/s). Thereafter, power decreased significantly with increasing velocity, up to 17 ± 10 W (at 2.0 m/s). The angle between the horizontal and the line connecting the highest and lowest points of the malleolus trajectory was significantly wider at 1.2 m/s than at 2.0 m/s (75 ± 4° vs. 63 ± 6°). This could explain the change of power with velocity because all the other kinematic indices considered were similar at the two velocities. These results suggest that the propulsive role of the flutter-kick increases as the swimming velocity decreases.  相似文献   

20.
This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e. dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s?1. The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号