首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

2.
Abstract

A study of the effect of fatigue on the mechanical characteristics of running during a 10,000 meter race was undertaken using high speed cinematography and a computer analysis technique. Eight highly skilled male subjects were filmed at four intervals throughout the event. An analysis of variance for trends was conducted for each of the dependent variables indicating the adjustments made by the runners that accompanied fatigue over the four stages of the event. Runners countered fatigue by changing sections of their total gait pattern (stride length, stride rate, segmental body positions) and reducing running velocity. Toward the end of the race the runners became less competent in the positioning of the foot and leg at foot-strike, which increased the potential for a retarding effect. A more extended lower limb increased the energy requirements of the recovery phase during the latter stages of the race. Fatigue caused these highly skilled runners to systematically alter their technique throughout the race. These adjustments, however, were not excessive.  相似文献   

3.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

4.
This study investigated the effects of combined sleep deprivation and strenuous exercise on cognitive and neurobehavioral performance among long-distance runners completing one of the most difficult ultramarathons in the world. Seventeen runners participated. Each had a wrist-worn actigraph throughout the race to record their sleep time. In addition, each individual’s performance in 10-min response-time tests before and after the race was recorded and a questionnaire enabled participants to report any difficulties they experienced during the competition. During race completion times of 27 to 44 h, combined acute lack of sleep (12 ± 17 min of rest during the race) and strenuous exercise (168.0 km) had marked adverse effects on cognitive performances ranging from mere lengthening of response time to serious symptoms such as visual hallucinations. This study suggests that regardless of rest duration and time in race, cognitive performances of ultramarathoners are adversely affected.  相似文献   

5.
Borg-Skala     
The aim of this study was to analyze differences in the rate of subjectively perceived exertion for half marathon runners versus ultramarathon runners measured with the Borg scale (6–20); therefore, 21 half marathon runners (mean age 34.3 ± 7.3 years, height 177 ± 7 cm and body weight 72 ± 8.1 kg) and 16 ultramarathon runners (39.8 years, 176.1 ± 7 cm and 69.1 ± 8.2 kg) participating in the Mountainman Race in Melchseefrutt (Obwalden, Switzerland) were asked to specify the perceived exertion with the Borg scale (6–20) for the first part of the race, the second part of the race and the total race. Half marathon runners and ultramarathon runners indicated values of 14.2 and 14.7, respectively for the first part of the race, which were in the same range measured with the Borg scale (6–20). A different pattern could be detected for the second part of the race with values of 16.3 for half marathon runners and 18.6 for ultramarathon runners. The rate of total perceived exertion was higher with 17.6 for ultramarathon runners versus 15.7 for half marathon runners, whereby differences between perceived exertion in the second part of the race and the total race in the ultramarathon did not show significant differences in contrast to the half marathon, where significant differences could be detected. These findings can be embedded in previously conducted analyses for a 100 km race indicating an exponential increase of stress parameters after 75 km (e.g. creatine kinase, lactate dehydrogenase and transaminases) resulting from an acute phase reaction. Parallel analyses of biological parameters (e.g. heart rate, creatine kinase, lactate dehydrogenase and transaminases) could give further hints concerning the principal validity of the Borg scale (6–20) for ultramarathon races.  相似文献   

6.
An inertial measurement unit (IMU) is widely considered to be an economical alternative to capture human motion in daily activities. Use of an IMU for clinical study, rehabilitation, and in the design of orthoses and prostheses has increased tremendously. However, its use in defining running gait is limited. This study presents a practical method to estimate running spatial and temporal parameters using an inertial sensor by placing it on a shoe. A combination of a zero-crossing method and thresholding is used to identify foot-strike and foot-off based on foot acceleration during running. Stride time, ground contact time and flight time can then be identified. An off-phase segmentation algorithm is applied to estimate stride length and running speed. These two parameters are commonly used to evaluate running efficiency and to differentiate elite runners. This study found that an IMU can estimate foot-strike and foot-off with average absolute time differences of 2.60–6.04 and 2.61–16.28 ms, respectively. Stride time was estimated with error between ? 4.04 and 0.33 ms. Stride length and running speed were estimated with maximum average errors of 45.97 mm and 0.41 km/h.  相似文献   

7.
世界优秀男子400m短跑运动员平均最高速度产生在50—150m段落,速度明显下降发生在300m处;在300—350m段落,几乎所有运动员步长降至最短,冲刺阶段略有回升;大部分运动员步频在50—100m段落增大至最高水平,然后逐渐下降。步频与步长呈高度负相关;年龄与步长呈高度正相关;最高速度和速度耐力在很大程度上决定最终成绩。  相似文献   

8.
Abstract

The aim of this study was to assess the effect of caffeine ingestion on 8 km run performance using an ecologically valid test protocol. A randomized double-blind crossover study was conducted involving eight male distance runners. The participants ran an 8 km race 1 h after ingesting a placebo capsule, a caffeine capsule (3 mg · kg?1 body mass) or no supplement. Heart rate was recorded at 5 s intervals throughout the race. Blood lactate concentration and ratings of perceived exertion were recorded after exercise. A repeated-measures analysis of variance (ANOVA) identified a significant treatment effect for 8 km performance time (P < 0.05); caffeine resulted in a mean improvement of 23.8 s (95% confidence interval [CI] = 13.1 to 34.5 s) in 8 km performance time (1.2% improvement, 95% CI = 0.7 to 1.8%). In addition, a two-way (time × condition) repeated-measures ANOVA identified a significantly higher blood lactate concentration 3 min after exercise during the caffeine trial (P < 0.05). We conclude that ingestion of 3 mg · kg?1 body mass of caffeine can improve absolute 8 km run performance in an ecologically valid race setting.  相似文献   

9.
ABSTRACT

During the course of a training programme, runners will typically increase running velocity and volume possibly encountering fatigue during a run, which is characterised as a feeling of general tiredness. The purpose of the current study was to identify whether or not level of perceived fatigue affects coordination and coordination variability in healthy runners during the recovery velocity of an endurance interval run. A total of 20 endurance runners completed a 1-hour run that included running velocity intervals at 75% of estimated 10 k race pace (5 minutes) and estimated 10 k race pace (1 minute). After each run, participants completed a fatigue questionnaire and were grouped based on their post-run self-reported perceived fatigue. 3D motion capture data were collected during the run and analysed to generate coordination patterns and variability of the patterns as dependent variables. Multiple mixed model ANOVAs were conducted to test for differences between perceived fatigue groups. Coordination and variability differences were reported in a number of couplings during transition phases (late and early stance) and events (toe-off and foot contact) of the gait cycle. It was concluded that the level of perceived fatigue affected coordination and coordination variability during the recovery velocity of a 1-hour interval run.  相似文献   

10.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

11.
Abstract

The aim of this study was to introduce a Newton–Euler inverse dynamics model that included reaction force and moment estimation at the lumbo-sacral (L5-S1) and thoraco-lumbar (T12-L1) joints. Data were collected while participants ran over ground at 3.8 m · s?1 at three different stride lengths: preferred stride length, 20% greater than preferred, and 20% less than preferred. Inputs to the model were ground reaction forces, bilateral lower extremity and pelvis kinematics and inertial parameters, kinematics of the lumbar spine and thorax and inertial parameters of the lumbar segment. Repeated measures ANOVA were performed on the lower extremity sagittal kinematics and kinetics, including L5-S1 and T12-L1 three-dimensional joint angles, reaction forces and moments at touchdown and peak values during impact phase across the three stride conditions. Results indicated that L5-S1 and T12-L1 vertical reaction forces at touchdown and during the impact portion of the support phase increased significantly as stride length increased (P < 0.001), as did peak sagittal L5-S1 moments during impact (P = 0.018). Additionally, the transverse T12-L1 joint moment increased as running speed increased (P = 0.006). We concluded from our findings that our model was sensitive to our perturbations in healthy runners, and may prove useful in future mechanistic studies of L5-S1 mechanics.  相似文献   

12.
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.  相似文献   

13.
Abstract

We hypothesised that experienced runners would select a stride frequency closer to the optimum (minimal energy costs) than would novice runners. In addition, we expected that optimal stride frequency could simply be determined by monitoring heart rate without measuring oxygen consumption (V?O2). Ten healthy males (mean±s: 24±2 year) with no running training experience and 10 trained runners of similar age ran at constant treadmill speed corresponding to 80% of individual ventilatory threshold. For two days, they ran at seven different stride frequencies (self-selected stride frequency±18%) imposed by a metronome. Optimal stride frequency was based on the minimum of a second-order polynomial equation fitted through steady state V?O2 at each stride frequency. Running cost (mean±s) at optimal stride frequency was higher (P < 0.05) in novice (236±31 ml O2·kg?1.km?1) than trained (189±13 ml O2·kg?1.km?1) runners. Self-selected stride frequency (mean±s; strides.min?1) for novice (77.8±2.8) and trained runners (84.4±5.3) were lower (P < 0.05) than optimal stride frequency (respectively, 84.9±5.0 and 87.1±4.8). The difference between self-selected and optimal stride frequency was smaller (P < 0.05) for trained runners. In both the groups optimal stride frequency established with heart rate was not different (P > 0.3) from optimal stride frequency based on V?O2. In each group and despite limited variation between participants, optimal stride frequencies derived from V?O2 and heart rate were related (r > 0.7; P < 0.05). In conclusion, trained runners chose a stride frequency closer to the optimum for energy expenditure than novices. Heart rate could be used to establish optimal stride frequency.  相似文献   

14.
Gait retraining using visual biofeedback has been reported to reduce impact loading in runners. However, most of the previous studies did not adequately examine the level of motor learning after training, as the modified gait pattern was not tested in a dual-task condition. Hence, this study sought to compare the landing peak positive acceleration (PPA) and vertical loading rates during distracted running before and after gait retraining. Sixteen recreational runners underwent a two-week visual biofeedback gait retraining program for impact loading reduction, with feedback on the PPA measured at heel. In the evaluation of PPA and vertical loading rates before and after the retraining, the participants performed a cognitive and verbal counting task while running. Repeated measures ANOVA indicated a significant interaction between feedback and training on PPA (F = 4.642; = 0.048) but not vertical loading rates (F > 1.953; > 0.067). Pairwise comparisons indicated a significantly lower PPA and vertical loading rates after gait retraining (< 0.007; Cohen’s > 0.68). Visual feedback after gait retraining reduced PPA and vertical loading rates during distracted running (< 0.033; Cohen’s > 0.36). Gait retraining is effective in lowering impact loading even when the runners are distracted. In dual-task situation, visual biofeedback provided beneficial influence on kinetics control after gait retraining.  相似文献   

15.
The aim of this study was to determine whether gait cycle characteristics are associated with running economy in elite Kenyan runners. Fifteen elite Kenyan male runners completed two constant-speed running sets on a treadmill (12 km ·h?1 and 20 km ·h?1). VO2 and respiratory exchange ratio values were measured to calculate steady-state oxygen and energy cost of running. Gait cycle characteristics and ground contact forces were measured at each speed. Oxygen cost of running at different velocities was 192.2 ± 14.7 ml· kg?1· km?1 at 12 km· h?1 and 184.8 ± 9.9 ml· kg?1· km?1 at 20 km· h?1, which corresponded to a caloric cost of running of 0.94 ± 0.07 kcal ·kg?1·km?1 and 0.93 ± 0.07 kcal· kg?1· km?1. We found no significant correlations between oxygen and energy cost of running and biomechanical variables and ground reaction forces at either 12 or 20 km· h?1. However, ground contact times were ~10.0% shorter (very large effect) than in previously published literature in elite runners at similar speeds, alongside an 8.9% lower oxygen cost (very large effect). These results provide evidence to hypothesise that the short ground contact times may contribute to the exceptional running economy of Kenyan runners.  相似文献   

16.
Participation trends in 100 m (161 km) ultramarathon running competitions in North America were examined from race results from 1977 through 2008. A total of 32, 352 finishes accounted for by 9815 unique individuals were identified. The annual number of races and number of finishes increased exponentially over the study period. This growth in number of finishes occurred through a combination of (1) an increase in participation among runners ≥40 years of age from less than 40% of the finishes prior to the mid-1980s to 65–70% of the finishes since 1996, (2) a growth (p < 0.0001) in participation among women from virtually none in the late 1970s to nearly 20% since 2004, and (3) an increase in the average annual number of races completed by each individual to 1.3. While there has been considerable growth in participation, the 161 km ultramarathon continues to attract a relatively small number of participants compared with running races of shorter distances.  相似文献   

17.
The aim of this study was to analyse gait variability and symmetry in race walkers. Eighteen senior and 17 junior athletes race walked on an instrumented treadmill (for 10 km and 5 km, respectively) at speeds equivalent to 103% of season’s best time for 20 km and 10 km, respectively. Spatio-temporal and ground reaction force (GRF) data were recorded at 2.5 km, and at 4.5, 6.5 and 8.5 km for a subsection of athletes. Gait variability was measured using median absolute deviation (MAD) whereas inter-leg symmetry was measured using the symmetry angle. Both groups showed low variability for step length (<0.9%), step frequency (<1.1%), contact time (≤1.2%) and vertical peak force values (<5%), and neither variability nor symmetry changed with distance walked. Junior athletes were more variable for both step length (P = 0.004) and loading force (P = 0.003); no differences for gait symmetry were found. Whereas there was little mean asymmetry overall, individual analyses identified asymmetry in several athletes (symmetry angle ≥ 1.2%). Importantly, asymmetrical step lengths were found in 12 athletes and could result from underlying imbalances. Coaches are advised to observe athletes on an individual basis to monitor for both variability and asymmetry.  相似文献   

18.
This study investigated differences in lower-limb coordination and coordination variability between experienced and novice runners during a prolonged run. Thirty-four participants were categorised as either experienced (n = 17) or novice runners (n = 17). All participants performed a 31-min treadmill run at their individual anaerobic threshold speed, and lower-limb kinematic data were acquired in the sagittal plane at the beginning, middle, and end of the run. Lower-limb coordination and variability during the stance phase were quantified using a vector coding technique for hip-knee, knee-ankle, pelvis-thigh, thigh-shank, and shank-foot couplings. Repeated-measure analysis of covariance revealed that running experience and time had significant interactions on the coordination patterns for hip-knee and pelvis-thigh couplings. During the midstance, experienced runners exhibited a higher percentage of in-phase motion for pelvis-thigh and knee-ankle couplings while novice runners displayed a higher percentage of distal motion for pelvis-thigh coupling and anti-phase motion for hip-knee coupling. Experienced runners displayed more variability in hip-knee and shank-foot couplings, and novice runners had more variability in hip, knee, and thigh motion. Experienced and novice runners adapted to progressive fatigue through different lower-limb coordination patterns. Throughout the prolonged run, experienced runners demonstrated greater coordination variability and novice runners displayed greater joint and segment variability.  相似文献   

19.
Abstract

The aims of this study were to examine ground contact characteristics, their relationship with race performance, and the time course of any changes in ground contact time during competitive 800 m and 1500 m races. Twenty-two seeded, single-sex middle-distance races totalling 181 runners were filmed at a competitive athletics meeting. Races were filmed at 100 Hz. Ground contact time was recorded one step for each athlete, on each lap of their race. Forefoot and midfoot strikers had significantly shorter ground contact times than heel strikers. Forefoot and midfoot strikers had significantly faster average race speed than heel strikers. There were strong large correlations between ground contact time and average race speed for the women's events and men’s 1500 m (r = ?0.521 to ?0.623; P < 0.05), whereas the men's 800 m displayed only a moderate relationship (r = ?0.361; P = 0.002). For each event, ground contact time for the first lap was significantly shorter than for the last lap, which might reflect runners becoming fatigued.  相似文献   

20.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号