首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、利用定义求角例1已知四面体ABCD,AC⊥BD,且△ABC的面积为15,△ACD的面积为9.若AC=6,BD=7.求二面角B-AC-D的大小.解如图1,作BE⊥AC于E,连DE.∵AC⊥BD,AC⊥BE,∴AC⊥平面BDE,AC⊥DE.∴∠BED是二面角B-AC-D的平面角.∵S△ABC=15,S△ACD=9,AC=6,∴15=12×6×BE,则BE=5;9=21×6×DE,则DE=3.在△BDE中,由余弦定理可得cos∠BED=-21,故∠BED=120°.二、利用垂线求角例2如图2,正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.解过P作BD1及AD1的垂线,垂足分别是E,F,连EF.由于AB⊥平…  相似文献   

2.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

3.
一、重心有关的定义、定理:(Ⅰ)在三棱锥中,若各个侧面在底面上的射影面积相等,则顶点在底面上的射影为底面三角形的重心.(Ⅱ)设G是△ABC的重心,AG的延长线交BC于D,则有(1)BD=DC;(2)AG∶AD=2∶3;(3)S△GAB=S△GBC=S△GAC=13S△ABC;(4)AD2=14(2AB2+2AC2-BC2).例1三棱锥V-ABC三侧面与底面所成的二面角分别为30°,45°,60°,底面积为3,顶点在底面上的射影是底面的重心,求三棱锥的侧面积.解设顶点在底面的射影为G,依题意知,G是△ABC的重心.由平面几何知识得S△GAB=S△GBC=S△GAC=13S△ABC=1.由面积射影定理知S△VAC…  相似文献   

4.
如图所示,ABCD是直角梯形,∠A BC=90°,SA⊥底面ABCD,AD=0.5,求面SCD与面SBA所成二面角的大小.解法一延长BA与CD,交于点P,连接SP.过点A作AE⊥SP,垂足为E,连接DE.∵SA⊥底面ABCD,AD?面ABCD,∴SA⊥AD.∵AD⊥AB,SA∩AB=A,∴AD⊥面SAB,∴AE为ED在底SAB内的射影.∵AE⊥SP,∴ED⊥SP,∴∠A ED即为面SCD与面SAB所成二面角的平面角.在Rt△SAP中,SA=AP=1,∴AE=2/2.在Rt△EAD中,tan∠A ED=12/2/2=22,∴∠A ED=arctan(2/2)点评无棱二面角的求解,关键在于如何寻找二面角的棱.很明显,在这个题目中,已经知道了…  相似文献   

5.
我们知道 ,空间二面角的计算是高考的热点内容之一 ,也是大家感到棘手的问题之一 .正确有效地求解二面角问题的一个重要方面是结合问题实际 ,把握空间图形特征 ,巧作二面角的平面角 .下面是一些实例 .一、利用二面角的面的特性例 1 如图 1,PAB是圆锥的轴截面 ,C是底面⊙O的圆周上一点 ,已知∠CPB =90°,∠CPA= 60° ,PA =4,求二面角A -PC-B的余弦值 .解 ∵PA =PC且∠CPA =60° ,∴ PAC为正三角形 ,设D是PC中点 ,则AD⊥PC .又设E为BC中点 ,则DE∥ 12 PB .∵∠CPB =90°,即BP ⊥PC ,∴DE⊥PC ,∴∠ADE为二面角A-PC…  相似文献   

6.
下面就如何求二面角的大小,送同学们五把钥匙.第一把钥匙,是“作一条,连一条”图1所谓“作一条,连一条”,如图1,由一个半平面内异于棱上的一点A作(或已作出)另一个半平面的垂线,垂足为B,过B向二面角的棱作一条垂线,垂足为C,连结AC,则由三垂线定理可知,∠ACB为二面角的平面角,再通过解三角形求出∠ACB的大小.【例1】如图2,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2,EB=1,求二面角C—DE—C1的正切值.解:∵C1C⊥面ABCD,过C作CG⊥DE于G,连结C1G,则由三垂线定理知,C1G⊥DE,∴∠C1GC为二面角C—DE—C1的平面角,在△C…  相似文献   

7.
一、精心选一选(每题3分,计24分)1.如图1,已知AB=AC,D,E分别为AB,AC的中点,G,H分别为AD,AE的中点,则图中全等三角形共有().(A)3对(B)4对(C)5对(D)6对2.△ABC中,AB=7cm,AC=5cm,第三边BC上的中线AD的取值范围是().(A)2cm相似文献   

8.
1.如图1,已知平行四边形ABCD中,AD=2,CD=√2,∠ADC=45°,AE⊥BC,垂足为E,沿直线AE将△BAE翻折成△B1AE,使得平面B1AE⊥平面AECD。连接B1D,P是B1D上的点。 (1)当B1P=PD时,求证CP上平面AB1D。 (2)当B1P=2PD时,求二面角P-AC-D的余弦值。 2.如图2...  相似文献   

9.
立体几何离不开图形,而其中最主要的是基本图形.因此,在立体几何教学中,要引导学生在掌握好基本图形的基础上,学会基本图形间的组合与把较复杂图形分离成基本图形的方法,这是学好立体几何的关键之一。例1.比较下列4题中4种图形在结构上的异同.(1)三棱锥P—ABC中,PA⊥面ABC,平面PBC⊥平面PAB,求证:BC⊥AB.(2)在上题中,若AD⊥PB交PB于D,AE⊥PC交PC于E,AD∶AE=1∶2.求二面角A—PC—B的大小.(3)直三棱柱ABC—A1B1C1中,侧棱AA1=4,底面△ABC中,AB=BC=2,∠B=90°.求截面A1BC与侧面A1ACC1所成的锐二面角的大小.(4)圆柱侧…  相似文献   

10.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

11.
二面角是立体几何的重要内容 ,是高考命题的热点 ,也是教学中的难点 .下面以一道高考题为例谈谈求二面角的常用方法 .( 2 0 0 1全国高考题 )如图 1,在底面是直角梯形的四棱锥S -ABCD中 ,∠ABC =90°,SA ⊥面ABCD ,SA =AB=BC =1,AD =12 .( 1)求四棱锥S -ABCD的体积 ;( 2 )求面SCD与面SBA所成的二面角的正切值 .这道题的第 2小题 ,要求出二面角的正切值 ,解决这一问题 ,通常有如下几种方法 .一、定义法根据二面角的定义 ,先作出二面角的平面角 ,然后求解 ,即按照“一作———二证———三解”的步骤进行 ,这是二面角求解的基本…  相似文献   

12.
在对学生进行课外辅导的过程中,有一位同学提出了以下一道题目:例1 P是二面角α-AB-β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,求二面角α-AB-β的大小?这道题目本身并不算太难,当场我就给出了如下的解答.解:如图1,过N点在平面β内作NE⊥AB交于点E,过E点在平面α内作EM⊥AB,交PM于点M,那么∠NEM就是二面角α-AB-β的平面角.设PE的长度为a,由∠BPM=∠BPN=45°有NE=ME=a,PN=PM=2a,而∠MPN=60°,于是MN=2a.在△MNE中,NE=ME=a,MN=2a,显然有∠NEM=90°,于是二面角α-AB-β的…  相似文献   

13.
例题△ABC是等腰直角三角形,∠ABC=90°,AB=2,点P是平面ABC外一点,PA⊥平面ABC,PA=AC,求二面角B—PC—A的平面角的一个三角函数值.  相似文献   

14.
本文以一道面积题为例.介绍三种求一条线段的思路. 题已知AABC中,∠BAC=45°,AD⊥BC于D,DB=3,DC=2,求△ABC的面积. 分析因为BC已知,所以要求△ABC的面积,关键是求BC上的高AD,如何求? 思路1 用方程解如图1,作CE⊥AB于E,设AD=x,CE=y,则AB=9+x2,AC  相似文献   

15.
李燊 《中学生数理化》2007,(12):49-51,59,60
学习数学的艺术在于,发现最具代表性的特例.——大卫·希尔伯特(时间:120分钟;满分:120分)一、填空题(每小题4分,共32分)1.如图1,AC=BD,要使△ABC≌△DCB,只需增加一个条件,可利用来证明.2.如图2,已知AB=10cm,AD⊥AB于A,BE⊥AB于B,点C在AB上,DC⊥CE且DC=CE,则AD BE=.3.如图3,AB  相似文献   

16.
有这样一道立体几何题:平面a过△ABC的一边BC,△ABC是△ABC在a内的射影,二面角A-BC-A′=(如图1).求证:S_(△ABC)=S_(△ABC)·cos证明:过A在△ABC中作AD⊥BC交BC于D∵AA′⊥平面a,由三垂线定理逆定理有A′D⊥BC,∴∠ADA′为二面角A-BC-A′的平面角,即∠ADA′=∴A′D=  相似文献   

17.
江西省2 0 0 4年九所重点中学高三联考第15题:三棱锥三条侧棱两两垂直,三个侧面与底面所成角分别是30°、4 5°、6 0°,底面积是6 ,则三棱锥体积是.分析 本题条件聚集在面积、面与面所成角,解法必须围绕面的关系来设计,考虑到面积射影定理沟通了二面角与面积的联系,故可解如下:解 设P—ABC为题设三棱锥,PA =a ,PB=b ,PC =c ,不妨设二面角P—CB—A、P—AC—B、P—AB—C分别为30°、4 5°、6 0°.由面积射影定理,得S△PBC =S△ABC·cos30°,∴12 bc=32 ·6 .同理 12 ac=22 ·6 ,12 ab=12 ·6 .( )三式相乘得 18(abc) 2 =18·(…  相似文献   

18.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

19.
在求空间角、空间距离时,常需要考虑图形定位问题,其关键往往是确定点在线或面上的射影位置,这也是解立体几何题的一个难点.本文就立体几何解题中点的射影定位问题作些探讨.  一、观察图形,直接定位有些立体几何问题,只要通过观察其直观图,利用常见的几何特性即可顺利确定,这类题可以采用直接定位.图1例1  (2004·福建19)在三棱锥S ABC 中,△ABC是边长为 4 的正三角形, 平面 SAC⊥平面ABC,SA=SC=2 3,M、N分别为AB、SB的中点.(1)求二面角N CM B 的大小;(2)求点B到平面CMN 的距离.   解析  (1)欲求二面角N CM B 的大小,…  相似文献   

20.
在历年高考中,解决立体几何解答题一般有几何法和向量法两种(几何法重逻辑推理,向量法重计算).现就一道典型题目谈谈二面角问题的求解策略. 题目 如图1,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (1)证明:PA⊥BD. (2)若PD=AD,求二面角A-PB-C的余弦值. 现在主要针对第二问作探讨. 解法1:作出二面角的平面角. 过点A作AE⊥PB交PB于E,过E作EF∥BC交PC于F,连接AF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号