首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A multi-functional microfluidic platform was fabricated to demonstrate the feasibility of on-chip electroporation integrated with dielectrophoresis (DEP) and alternating-current-electro-osmosis (ACEO) assisted cell/particle manipulation. A spatial gradient of electroporation parameters was generated within a microchamber array and validated using normal human dermal fibroblast (NHDF) cells and red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) with various fluorescent indicators. The edge of the bottom electrode, coinciding with the microchamber entrance, may act as an on-demand gate, functioning under either positive or negative DEP. In addition, at sufficiently low activation frequencies, ACEO vortices can complement the DEP to contribute to a rapid trapping/alignment of particles. As such, results clearly indicate that the microfluidic platform has the potential to achieve high-throughput screening for electroporation with spatial control and uniformity, assisted by DEP and ACEO manipulation/trapping of particles/cells into individual microchambers.  相似文献   

2.
Three dimensional (3D) stepped electrodes dramatically improve the flow rate and frequency range of ac electro-osmotic pumps, compared to planar electrodes. However, the fabrication of 3D stepped electrodes for ac electro-osmosis (ACEO) pumps usually involves several processing steps. This paper demonstrates results from ACEO pumps produced by a faster and less expensive method to fabricate the 3D electrodes—extending the previous work to disposable devices. The method is based on shadowed evaporation of metal on an insulating substrate that can be injection molded. Flow velocities through the 3D ACEO pump are similar to those seen in the previous work.  相似文献   

3.
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a "dry and wet hybrid" technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid.  相似文献   

4.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

5.
Microrheometry is very important for exploring rheological behaviours of several systems when conventional techniques fail. Microrheometrical measurements are usually carried out in microfluidic devices made of Poly(dimethylsiloxane) (PDMS). Although PDMS is a very cheap material, it is also very easy to deform. In particular, a liquid flowing in a PDMS device, in some circumstances, can effectively deform the microchannel, thus altering the flow conditions. The measure of the fluid relaxation time might be performed through viscoelasticity induced particle migration in microfluidics devices. If the channel walls are deformed by the flow, the resulting measured value of the relaxation time could be not reliable. In this work, we study the effect of channel deformation on particle migration in square-shaped microchannel. Experiments are carried out in several PolyEthylene Oxyde solutions flowing in two devices made of PDMS and Poly(methylmethacrylate) (PMMA). The relevance of wall rigidity on particle migration is investigated, and the corresponding importance of wall rigidity on the determination of the relaxation time of the suspending liquid is examined.  相似文献   

6.
We present design, characterization, and testing of an inexpensive, sheath-flow based microfluidic device for three-dimensional (3D) hydrodynamic focusing of cells in imaging flow cytometry. In contrast to other 3D sheathing devices, our device hydrodynamically focuses the cells in a single-file near the bottom wall of the microchannel that allows imaging cells with high magnification and low working distance objectives, without the need for small device dimensions. The relatively large dimensions of the microchannels enable easy fabrication using less-precise fabrication techniques, and the simplicity of the device design avoids the need for tedious alignment of various layers. We have characterized the performance of the device with 3D numerical simulations and validated these simulations with experiments of hydrodynamic focusing of a fluorescently dyed sample fluid. The simulations show that the width and the height of the 3D focused sample stream can be controlled independently by varying the heights of main and side channels of the device, and the flow rates of sample and sheath fluids. Based on simulations, we also provide useful guidelines for choosing the device dimensions and flow rates for focusing cells of a particular size. Thereafter, we demonstrate the applicability of our device for imaging a large number of RBCs using brightfield microscopy. We also discuss the choice of the region of interest and camera frame rate so as to image each cell individually in our device. The design of our microfluidic device makes it equally applicable for imaging cells of different sizes using various other imaging techniques such as phase-contrast and fluorescence microscopy.  相似文献   

7.
The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work presents a novel, simple, and cost-effective bench-top approach for the integration of high surface area three-dimensional structured electrodes fabricated on polystyrene (PS) within poly(dimethylsiloxane) (PDMS)-based microfluidics. Optimization of PS-PDMS bonding results in integrated devices that perform well under pressure and fluidic flow stress. Furthermore, the fabrication and bonding processes are shown to have no effect on sensing electrode performance. Finally, the on-chip sensing capabilities of a three-electrode electrochemical cell are demonstrated with a model redox compound, where the high surface area structured electrodes exhibit ultra-high sensitivity. We propose that the developed approach can significantly expedite and reduce the cost of fabrication of sensing devices where arrays of functionalized electrodes can be used for point-of-care analysis and diagnostics.  相似文献   

8.
A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications.  相似文献   

9.
We report an in-depth study of the long-term reproducibility and reliability of droplet dispensing in digital microfluidic devices (DMF). This involved dispensing droplets from a reservoir, measuring the volume of both the droplet and the reservoir droplet and then returning the daughter droplet to the original reservoir. The repetition of this process over the course of several hundred iterations offers, for the first time, a long-term view of droplet dispensing in DMF devices. Results indicate that the ratio between the spacer thickness and the electrode size influences the reliability of droplet dispensing. In addition, when the separation between the plates is large, the volume of the reservoir greatly affects the reproducibility in the volume of the dispensed droplets, creating "reliability regimes." We conclude that droplet dispensing exhibits superior reliability as inter-plate device spacing is decreased, and the daughter droplet volume is most consistent when the reservoir volume matches that of the reservoir electrode.  相似文献   

10.
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.  相似文献   

11.
Mei Z  Wu TF  Pion-Tonachini L  Qiao W  Zhao C  Liu Z  Lo YH 《Biomicrofluidics》2011,5(3):34116-341166
An "optical space-time coding method" was applied to microfluidic devices to detect the forward and large angle light scattering signals for unlabelled bead and cell detection. Because of the enhanced sensitivity by this method, silicon pin photoreceivers can be used to detect both forward scattering (FS) and large angle (45-60°) scattering (LAS) signals, the latter of which has been traditionally detected by a photomultiplier tube. This method yields significant improvements in coefficients of variation (CV), producing CVs of 3.95% to 10.05% for FS and 7.97% to 26.12% for LAS with 15 μm, 10 μm, and 5 μm beads. These are among the best values ever demonstrated with microfluidic devices. The optical space-time coding method also enables us to measure the speed and position of each particle, producing valuable information for the design and assessment of microfluidic lab-on-a-chip devices such as flow cytometers and complete blood count devices.  相似文献   

12.
In this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.  相似文献   

13.
Lewpiriyawong N  Yang C 《Biomicrofluidics》2012,6(1):12807-128079
The recent development of microfluidic “lab on a chip” devices requires the need to continuously separate submicron particles. Here, we present a PDMS microfluidic device with sidewall conducting PDMS (AgPDMS) composite electrodes capable of separating submicron particles in hydrodynamic flow. In particular, the device can service dual functions. First, the AgPDMS composite electrodes embedded in a sidewall of the device channel allow for performing AC-dielectrophoretic (DEP) characterization through direct microscopic observation of particle behavior. Characterization experiments are carried out for numerous parameters including particle size, medium conductivity, and AC field frequency to reveal important dielectrophoresis DEP information in terms of the crossover frequency and positive/negative DEP behavior under specific frequencies. Second, the device offers an advantage that sidewall AgPDMS composite electrodes can produce strong DEP effects throughout the entire channel height, and thus the robustness of the on-chip particle separation is demonstrated for continuous separation in a flowing mixture of 0.5 and 5 μm particles with 100% separation efficiency.  相似文献   

14.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

15.
Isolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture. The results demonstrated successful and stable capture and enrichment of rare particles and cells (trapping efficiencies over 99%), where particles remained trapped in a stable manner for up to 4 min. A device with four reservoirs was employed for the separation and enrichment of rare particles, where the particles of interest were first selectively concentrated and then effectively directed to a side port for future collection and analysis. The present study demonstrates that simple iDEP devices have appropriate screening capacity and can be used for handling samples containing rare particles; achieving both enrichment and isolation of low-abundant particles and cells.  相似文献   

16.
Li Y  Fu YQ  Brodie SD  Alghane M  Walton AJ 《Biomicrofluidics》2012,6(1):12812-128129
This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixing and ejection, as well as for sensing using a shear-horizontal wave SAW device. A SAW induced force has also been employed to enhance the EWOD droplet splitting function.  相似文献   

17.
This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.  相似文献   

18.
AACS是一种内容散布和数字版权管理的标准,通过吊销设备密钥来吊销非法的设备,并且采用子集差分树技术对数量庞大的设备密钥进行管理.根据子集差分树原理,每个设备需要存储大量的设备密钥.在被吊销设备的分布是随机和均匀的这一合理假设条件下,对AACS的设备密钥存储方案进行了改进.改进后,每个设备存储的密钥数量减少,并且合法设备被划分的子集个数仅仅稍微增加.  相似文献   

19.
The 5th International Conference on Optofluidics (Optofluidics 2015) was held in Taipei, Taiwan, July 26–29, 2015. The aim of this conference was to provide a forum to promote scientific exchange and to foster closer networks and collaborative ties between leading international researchers in optics and micro/nanofluidics across various disciplines. The scope of Optofluidics 2015 was deliberately broad and interdisciplinary, encompassing the latest advances and the most innovative developments in micro/nanoscale science and technology. Topics ranged from fundamental research to its applications in chemistry, physics, biology, materials, and medicine.Approximately 300 delegates participated in Optofluidics 2015 from across the globe, including Australia, Canada, China, France, Germany, Hong Kong, India, Japan, Korea, Singapore, Taiwan, UK, and USA. In total, 242 presentations were arranged, including 10 plenary speeches, 27 keynote speeches, 65 invited talks, 33 contributed talks, and 107 poster presentations. This collection of twelve papers on this special topic spans both the fundamentals and the frontier applications of this interdisciplinary research field.Optical measurements of particle or flow and fluidic manipulation for optical applications were presented. Lin and Su1 reported a novel method to measure the depth position of rapidly moving objects inside a microfluidic channel based on the chromatic aberration effect; the depth positions of label-free particles of diameter as small as 2 μm and erythrocytes of concentration 2 × 103 cells/μl and velocity 2.78 mm/s were detected within a range ±25 μm in a simple and inexpensive manner. Sun and Huang2 demonstrated the use of a microscopic circular polariscope to measure the flow-induced birefringence in a microfluidic device that represents the kinematics of fluid motion optically; CTAB:NaSal, CPyCl:NaSal, and CPyCl:NaSal:NaCl solutions were used to investigate the strain rate and the results were compared with the μPIV diagnosis. He et al.3 studied the fundamentals, especially the thinning and opening of the oil film within each pixel of an electrowetting display; to achieve repeatable oil movement and the resulting pixel performance, a new method to fill each pixel with a controllable oil volume using an oil-droplet emulsion created with a microfluidic device was demonstrated.This special topic includes papers also on particle manipulation. Weng et al.4 evaluated the size-dependent crossing frequency of dielectrophoretically driven particles; numerical simulation using a Maxwell stress tensor and a finite element method was reported to assess the size effect. In addition to electric manipulation, magnetic driving of the particles was demonstrated. Ido et al.5 examined microswimmers of magnetic particle chains in an oscillating magnetic field experimentally and analyzed numerically with a lattice Boltzmann method, an immersed boundary method, and a discrete particle method based on simplified Stokesian dynamics. Huang et al.6 described a technique to manipulate magnetic beads and achieved a great washing efficiency with zero bead loss using an appropriate electrode design and channel height of a digital microfluidic immunoassay; a model immunoassay of human soluble tumor necrosis factor receptor I (sTNF-RI) was performed to offer an improved limit of detection (3.14 pg/ml) with a small number of magnetic beads (25 beads), decreased reagent volumes (200 nl), and decreased duration of analysis (<1 h). Chiu et al.7 reported particle separation using cross-flow filtration enhanced with hydrodynamic focusing; label-free separation of particles of diameters 2.7 and 10.6 μm at a sample throughput 10 μl/min was performed; separation of spiked human prostate cancer cell lines (PC3) cells in whole blood was also demonstrated.Chemical sensors and biosensors are covered in this special topic. Cheng et al.8 measured the chemical compounds in third-hand smoke on varied clothing fibres with an analytical balance, or nicotine and 3-ethenylpyridine (3-EP) with a surface-acoustic-wave sensor composed of coated oxidized hollow mesoporous carbon nanospheres. Pu et al.9 described a continuous glucose monitoring microsystem consisting of a three-electrode electrochemical sensor in which the working electrode (WE) was covered with a single layer of graphene and gold nanoparticles to improve the sensor performance; the results of glucose measurement were linear below concentration 162 mg/dl with a detection limit 1.44 mg/dl. Li et al.10 implemented a microfluidic device measuring the glucose concentration with integrated fibre-optic surface plasmon resonance sensor and electrode pairs for volume quantification.Implantable devices and microneedles for drug delivery and liquid transport are addressed in this special topic. Zhang et al.11 reported a flexible polyimide device seated under rabbit eyelids to deliver drug by iontophoresis; varied currents to release manganese ions (Mn2+) as tracers were investigated; the thermal effect on application of a current was studied. Lee et al.12 presented a disposable Parylene microneedle array of large aspect ratio that vibrated with a piezoelectric actuator to mimic the vibrating motion of a mosquito''s proboscis and to decrease the insertion force by 40%. Song et al.13 demonstrated microinjection into a model organism, Caenorhabditis elegans (C. elegans) on an automated device capable of loading, immobilization, injection, and sorting; with 200 worms studied, injection speed 6.6 worm/min, injection success rate 77.5%, and sorting success rate 100% were obtained.We express our gratitude for the financial support from Ministry of Science and Technology (Taiwan), Bureau of Foreign Trade (Taiwan), National Taiwan University and Research Center for Applied Sciences of Academia Sinica, and for administrative support from Instrument Technology Research Center in making Optofluidics 2015 a successful conference. Our acknowledgements include Leslie Yeo, Frederick Kontur, Christine Urso, and all staff from Biomicrofluidics for their kind assistance during the preparation, and, most importantly, all authors who have contributed their work for this special topic.  相似文献   

20.
本文设计了一种无线土壤湿度采集装置,该装置通过湿度传感器HS1101对土壤湿度进行采集,然后将采集到的数据通过无线模块PTR2000发送出去,接收方接收到数据后解包,计算出湿度值并在液晶屏上显示。系统发射部分以AT89S52为核心,包括湿度采集、无线发射。接收部分也以AT89S52为核心,将无线接收、液晶显示结合起来,通过适当的软、硬件抗干扰处理,该系统具有实用性、小型化等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号