首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
高中《立体几何》P31第9题为:求证两条平行线和同一平面所成的角相等,教学参考书上给出的证明是这样的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,∠θ_2分别是a、b与α所成的角。 求证:∠θ_1=∠θ_2。 证明:如图,在a和b上分别取点A、B,这两点在平面α的同侧,且AA_1=BB_1,连结AB和A_1B_1,∴AA_1(?)BB_1,∴四边形AA_1BB_2是平行四边形,∴AB∥A_1B_1,∵A_1B_1(?)α,∴AB∥α,设A_2、B_2分别是α的垂线AA_2、BB_2的垂足,连结A_1A_2、B_1B_2,则距离AA_2=BB_2。  相似文献   

2.
《中学数学月刊》2004,(3):44-49
直线、平面 简单几何体1 .空间两直线 l,m在平面α,β上射影分别为 a1,b1和a2 ,b2 ,若 a1∥ b1,a2 与 b2 交于一点 ,则 l和 m的位置关系为 (   ) .(A)一定异面    (B)一定平行(C)异面或相交 (D)平行或异面图 12 .在直二面角α- MN -β中 ,等腰直角三角形ABC的斜边 BC α,一直角边 AC β,BC与β所成角的正弦值为 64 ,则 AB与β所成的角是 (   ) .(A) π6  (B) π3  (C) π4  (D) π23.二面角α- l-β是直二面角 ,A∈α,B∈β,设直线AB与α,β所成的角分别为∠ 1和∠ 2 ,则 (   ) .(A)∠ 1 ∠ 2 =90°  (B)∠ 1 …  相似文献   

3.
题目:如图1,已知正四棱柱 ABCD-A_1B_1C_1D_1,点 E 在棱 D_1D 上,截面 EAC∥D_1B,且面 EAC 与底面 ABCD 所成的角为 45°,AB=a.(Ⅰ)求截面 EAC 的面积;(Ⅱ)求异面直线 A_1B_1与AC 之间的距离;(Ⅲ)求三棱锥 B_1-EAC的体积.图1  相似文献   

4.
《立体几何》第31页第9道题是“求证:两条平行线和同一平面所成的角相等。”人民教育出版社出版的《教学参考书》第43页作了如下的解答: 已知:a∥b,a∩a=A_1,b∩a_1=B_1,∠θ_1、∠θ_2分别是a、b与a所成的角,求证:∠θ_1=∠θ_2。证:如图,在a与b上分别取点 A、B,这两点在平面a的同侧,且AA_1=BB_1,连结AB和A_1B_1。∵:AA_1(?)BB_1,∴四边形AA_1B_1B是平行四边形,∴AB∥A_1B_1,  相似文献   

5.
一、选择题(每小题5分,共50分)1.下列命题中,正确的是A.若直线a,与直线l所成的角相等,则a∥b b B.若直线a,与平面α成相等角,则a∥b b C.若平面α,β与平面γ所成的角均为直二面角,则α∥βD.若直线a,在平面α外,且a⊥α,⊥b,则b∥αb a2.已知空间四边形ABCD,M,N分别是AB,CD的中点,且AC=4,BD=6,则A.1相似文献   

6.
一、求角例1在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13姨,SB=29姨.求异面直线SC与AB所成角的大小.解在Rt△ABC中,AC=2,BC=13姨,∴AB=17姨.在Rt△SAB中,SB=29姨,∴SA=23姨.在Rt△SAC中,可求得SC=4.S C·A B=(S A+A C)·(A C+C B)=S A·A C+A C2+S A·C B+A C·C B=0+4+0+0=4.∴cosθ=S C·A BS C·A B=4417姨=17姨17.故异面直线SC与AB所成的角为arccos17姨17.注求异面直线所成的角,可构造向量,将异面线所成的角转化为两向量的夹角,利用向量数量积的式求解.例2如图,在直三棱柱…  相似文献   

7.
求异面直线距离是高中立几中的一个难点,对初学者来说很难掌握它的规律.为使学生易于理解和接受这个问题,本文仅就关于用正投影法求异面直线的距离进行一点探索,供读者参考. (一)用正投影法求互相不垂直的异面直线的距离。对于互相不垂直的异面直线a与b,作辅助平面——正投影面θ,使α⊥θ(图一),设a、b在θ上的射影分别为点A′和直线b′,公垂线AB在θ上的射影为  相似文献   

8.
本文就求异面直线的夹角,求直线与平面所成的角,求二面角,求点到平面的距离这几种题型,说一下它们的向量解法.1.求异面直线所成的角求异面直线所成的角时,只要找出这两条直线所在的向量,那么这两个向量所成的角(或其补角)就是异面直线所成的角.例1 如图,在Rt△AOB 中,∠OAB=π/6,斜边AB=4,而 Rt△AOC 可以通过 Rt△AOB 以直线 AO 为  相似文献   

9.
异面直线间的距离可以通过定义求解,也可以转化为向量的射影长来解决. 如图1,a、b是两条异面直线,C、D分别是a与b上任一点,若口是与a、b都垂直的向量, 则a、b之间的距离d=|CD·E|/|E|(d为CD在e/|e| 方向上的投影). 例1 如图2,已知正四棱柱ABCD- A1B1C1D1中,AB=1,AA1=2,求异面直线BD1与CC1之间的距离.  相似文献   

10.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

11.
空间角与距离既是立体几何的重点,也是学习的一个难点,本文结合2007年高考试题,展示空间角与距离的常用方法,希望对同学们的高考复习有所启示.异面直线所成的角【例1】(2007年高考全国卷Ⅰ第7题)如右图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.51B.52C.53D.54分析1以D1为角的顶点,连结CD1,利用平行四边形A1BCD1平移直线A1B.解法1:由题意设AB=a,则AA1=2a,如右图,连结CD1、AC,则由A1D1CB为平行四边形得CD1与A1B平行且相等,∠AD1C(或其补角)为两异面直线所成的角.在△AD1C中,AC=2a,AD1=5a,D1C=5a,∴由余弦定理得cos∠AD1C=2(5a)2-(2a)22×5a×5a=180aa22=54.∴选D.分析2以B为角的顶点连结BC1,利用平行四边形ABC1D1平移直线AD1.解法2:如右图,连结BC1、A1C1,则由AB∥C1D1且AB=C1D1知ABC1D1为平行四边形,∴BC1∥AD1,∴∠A1BC1(或其补角)是异面直线A1B与AD1所成的角,在△A1BC1中,易求得cos∠A...  相似文献   

12.
高中数学课本第二册(下B)的夹角与距离部分有这样一个典型问题:已知AO是平面α的斜线,A是斜足,直线OB⊥α,垂足是B,直线AB是斜线OA在α上的射影,AC是平面α内的一条直线,且BC⊥AC,垂足是C,设AO与AC所成的角为θ,AO与AB所成的角为θ1,AC与AB所成的角为θ2,则  相似文献   

13.
求异面直线间的距离为高中《立体几何》的难点.有关书刊介绍不少方法.本文旨在利用三角形面积射影给出它的求法。为此,先证明下面的命题: 若异面直线a,b所在平面成θ度的二面角α-l-β,且B‖l间的距离为c,则异面直线a,b间的距离d=csioθ (A) 证明:设a∈α b∈β在b上任取一点P,作PM⊥l,PN⊥α,M、N为垂足连结MN,由三垂线定理的逆定理知MN⊥l  相似文献   

14.
有这样一道立体几何题:已知∠B AC的两边与平面M相交于B、C两点,∠B AC所在的平面与平面M斜交,点A在平面M内的射影为A1且A1、B、C不共线,试比较∠B AC与∠B A1C的大小.此题中两个角的大小关系与△ABC的形状有关(或者说直线AB、AC与平面M所成的角有关),还与△ABC与平面M所成的角  相似文献   

15.
设A_1,B_1,C_1分别是△ABC中BC,CA,AB边上的任意点,则你△A_1B_1C_1为△ABC的内接三角形。本文中记△ABC的面积为S,AB=c,BC=a,CA=b,内切圆半径为r,三旁切圆半径为r_a,r_b,r_c;AC_1/C_1B=m,BA_1/A_1C=n,CB_1/B_1A=l,△AC_1B_1,△BA_1C_1,△CB_1A_1,△A_1B_1C_1的面积分别为S_1,S_2,S_3,S′。则有。定理、△ABC的面积S与其内接△A_1B_1C_1面积S′有如下关系式:S′=(1+mnl)/((1+m)(1+n)(1+l))S其中AC_1/C_1B=m,CB_1/B_1A=l,BA_1/A_1C=n。  相似文献   

16.
一求异面直线的夹角例1如图1,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,AE⊥PD于E,PD与底面成30°角.求异面直线AE与CD所成的角.分析:如图1建立空间坐标系.依题意知A(0,0,0),B(a,0,0),C(a,a,0),D(0,2a,0).在Rt△ADE中,∵∠PDA=30°,∴ED=3姨a,作EF⊥AD于F,则EF=3姨2a.在Rt△AEF中,AF=12a,∴E(0,12a,3姨2a).∴cos〈AE,CD〉=AE·CDAECD=2姨4.则异面直线AE与CD所成角的大小为arccos2姨4.点评:本题关键在于求E点坐标,进而求AE的坐标表式以便应用空间向量的夹角…  相似文献   

17.
不奇怪     
郭连元 《高中生》2009,(3):50-50
例题 在长方体ABCD—A1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的角.  相似文献   

18.
若直线AB是平面α的一条斜线,A’B’是AB在平面α内的射影,l为平面α内不同于A’B’的一条直线,且AB与l的夹角为θ,A’B’与l的夹角为θ1,AB与平面α所成的角为θ2,则易知cosθ=cosθ1·cosθ2,为了便于学生记忆和灵活使用,笔者不妨将此公式称为三线三角余弦公式,  相似文献   

19.
空间Z形图     
空间Z形图是一种基本的空间图形,它使两异面直线与交线、交角聚在一起,有利于找出其间的规律。为便于讨论,设CA、AB、BD是不共面的三条线段,如图所示;且AB=a、∠A=α、∠B=β,平面CAB与平面ABD所成的角为γ,异面直线AC、BD所成的角为φ,AC、BD间的距离为d。求异面直线间的距离如图一,过A在平面ABD内作BD的平行线l,过B在此平面内作AB的垂线与l交于D′,过B在平面ABC内作AB的垂线  相似文献   

20.
高中数学课本[人教版第二册(下B)p.44]给出了公式cosθ=cosθ1·cosθ2,其中公式中的θ1是斜线与平面所成的角,θ2是平面内的直线与斜线在平面内的射影所成的角,而θ是斜线与平面内的直线所成的角,当平面内的直线不过斜足时,θ就是两条异面直线所成的角.对某些两条异面直线所成的角以及斜线和平面所成的角问题,灵活应用此公式可比较方便的解决,下面举例说明.图11应用公式求两条异面直线所成的角例1如图1,在棱长为1的正方体ABCD-A1B1C1D1中,点E、F分别在棱B1C1、C1C上,且EC1=31,FC1=33,求异面直线A1B与EF所成的角.解因为A1B在平面…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号