首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
ABSTRACT

Cyclists may be at greater risk of developing asymmetrical force and motion patterns than other ground-based athletes. However, functional asymmetries during cycling tend to be highly variable, making them difficult to assess. Dual-energy x-ray absorptiometry (DXA) measurements of areal bone mineral density (aBMD) and lean mass (LM) in the lower limbs may be a more sensitive and consistent method to identify asymmetries in cyclists. The goal of this study was to determine if competitive cyclists have greater levels of asymmetries in the lower body compared to non-cyclists using DXA. A secondary aim was to determine if aBMD and LM asymmetries change over the road cycling season. 17 competitive cyclists and 21 non-cyclist, healthy controls underwent DXA scans. Lower-body asymmetries were greater in cyclists compared to non-cyclists in aBMD and LM for all lower limb segments. However, these asymmetries did not tend to consistently favour a particular side, except for the pelvis having more LM on the dominant side. The were no longitudinal changes in aBMD or LM in the cyclists. Asymmetry analysis via DXA provides evidence that although functional asymmetries during cycling are variable, cyclists have increased lower body LM and aBMD asymmetries compared to non-cyclists.  相似文献   

2.
目的:研究4 000 m场地自行车运动VO2反应,及前15 s高功率起动对运动成绩的影响。方法:11名男子自行车运动员在功率车上进行递增负荷试验和两种不同起动强度的4 000 m运动。首先进行前60 s平均功率(128±2)%MAP即(501.7±41.9)w强度对照模式运动;5 h后进行模拟模式运动,强度在第8~10 s达到最高值235%MAP(928.3±77.6)w,后逐步下降,15 s时至平均功率(421.9±40.1)w,维持15~60 s。60 s之后两组均进行自由速度模式,强度控制在380~420 w之间。结果:整个测试过程模拟组较对照组平均功率高19 w左右,有统计学差异。模拟组15~60 sVO2高于对照组,模拟组15s~60sVO2高于对照组,而AOD却低于对照组,对整个运动表现有促进作用。结论:4 000 m场地自行车运动前15 s高输出功率可伴随着更快的VO2反应而不是单一归于节省时间理论,并可促进中等距离自行车计时运动员的摄氧动员能力。  相似文献   

3.
There is evidence to suggest that perception of exertion during exercise is based on both local and central sensations. The aim of the present experiment was to determine the relative contributions of different sensations to overall perceived exertion during cycling. Eighteen trained cyclists pedalled on a cycle ergometer for 4 min at each of three work rates (100, 150 and 200 W) and cadences (50, 70 and 90 rev x min(-1)). At the end of each bout, they used Borg's category-ratio (CR-10) scale to rate their overall perceived exertion, leg muscle pain, knee pain, breathlessness and heart beat intensity. The results indicated that cadence only influenced local sensations (muscle pain and knee pain), which were significantly higher at slower pedalling rates. Neither overall perceived exertion nor central sensations (breathlessness and heart beat intensity) were significantly affected by cadence. In contrast, increases in work rate were associated with higher ratings for all sensations. Further analyses revealed that variations in these overall ratings of perceived exertion as a function of work rate were accounted for by variations in ratings of muscle pain and breathlessness. The general implication is that perceived exertion during cycling derives from a combination of muscle and respiratory sensations.  相似文献   

4.
In this study, we examined patterns of leg muscle recruitment and co-activation, and the relationship between muscle recruitment and cadence, in highly trained cyclists. Electromyographic (EMG) activity of the tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus was recorded using intramuscular electrodes, at individual preferred cadence, 57.5, 77.5 and 92.5 rev . min(-1). The influence of electrode type and location on recorded EMG was also investigated using surface and dual intramuscular recordings. Muscle recruitment patterns varied from those previously reported, but there was little variation in muscle recruitment between these highly trained cyclists. The tibialis posterior, peroneus longus and soleus were recruited in a single, short burst of activity during the downstroke. The tibialis anterior and gastrocnemius lateralis were recruited in a biphasic and alternating manner. Contrary to existing hypotheses, our results indicate little co-activation between the tibialis posterior and peroneus longus. Peak EMG amplitude increased linearly with cadence and did not decrease at individual preferred cadence. There was little variation in patterns of muscle recruitment or co-activation with changes in cadence. Intramuscular electrode location had little influence on recorded EMG. There were significant differences between surface and intramuscular recordings from the tibialis anterior and gastrocnemius lateralis, which may explain differences between our findings and those of previous studies.  相似文献   

5.
The muscle activity paradox during circular rhythmic leg movements   总被引:1,自引:0,他引:1  
A cyclist's legs make a simple 360 degrees circular and rhythmic movement, activated by a simple flexion-extension function in a sagittal plane. However, because of the simultaneous combination of leg rotation in the hip, knee and ankle joint with translation of the upper body, the general motion becomes quite complex. This complexity is increased by the anatomical interpretations of EMG readings taken during the pedalling cycle, indicating a high activity of 'flexor' muscles during the downward 'extension' of the leg (0-90 degrees propulsion phase of the pedalling cycle). This calls for an anatomical paradox. In order to verify these interpretations, the activity of six lower limb muscles was measured under field circumstances on nine elite cyclists using a portable EMG data acquisition system and active surface electrodes allowing remote (non-telemetric) monitoring of the cyclists' muscle activity patterns. Measurements were made during a 1000 m submaximal but constant effort and during a 200 m sprint. Confirmation of the anatomical paradox was found in both test circumstances. Analyses of the normalized EMG in combination with torque values of both hip and knee during the pedalling cycle indicate a zero torque at 135 degrees for the knee, while at this same angle the overall extensor activity ends in one leg and starts simultaneously in the other leg (at 315 degrees). Since the propulsion does not continue until 180 degrees, the flexor muscles have to be activated before the extension activity ends in order to generate the continuation of the circular motion until (and beyond) the bottom dead centre (180 degrees).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
There is evidence to suggest that perception of exertion during exercise is based on both local and central sensations. The aim of the present experiment was to determine the relative contributions of diff erent sensations to overall perceived exertion during cycling. Eighteen trained cyclists pedalled on a cycle ergometer for 4 min at each of three work rates (100, 150 and 200 W) and cadences (50, 70 and 90 rev. min-1). At the end of each bout, they used Borg's category-ratio (CR-10) scale to rate their overall perceived exertion, leg muscle pain, knee pain, breathlessness and heart beat intensity. The results indicated that cadence only influenced local sensations (muscle pain and knee pain), which were significantly higher at slower pedalling rates. Neither overall perceived exertion nor central sensations (breathlessness and heart beat intensity) were significantly affected by cadence. In contrast, increases in work rate were associated with higher ratings for all sensations. Further analyses revealed that variations in these overall ratings of perceived exertion as a function of work rate were accounted for by variations in ratings of muscle pain and breathlessness. The general implication is that perceived exertion during cycling derives from a combination of muscle and respiratory sensations.  相似文献   

7.
PurposeThis study aimed to investigate whether there is a systematic change of leg muscle activity, as quantified by surface electromyography (EMG), throughout a standard running footwear assessment protocol at a predetermined running speed.MethodsThirty-one physically active adults (15 females and 16 males) completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s. The level of muscle activity from 6 major leg muscles was recorded using surface EMG. The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity. Systematic effects of the chronological testing round (independent variable) on the normalized EMG overall intensity (dependent variable) were examined using Friedman analysis of variates and post hoc pairwise Wilcoxon signed-rank tests (α = 0.05).ResultsThere was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol (p < 0.001) until the fourth testing round when EMG intensities reached a steady state. The one exception was the biceps femoris muscle, which showed a significant reduction of EMG intensity during the stance phase (p < 0.001) but not the swing phase (p = 0.16).ConclusionWhile running at a predetermined speed, the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles. This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style. Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.  相似文献   

8.
大强度游泳抑制小鼠骨骼肌谷氨酰胺合成酶活性   总被引:9,自引:0,他引:9  
分析不同强度运动负荷对血浆和骨骼肌谷氨酰胺水平变化与骨骼肌谷氨酰胺合成酶活性变化,探讨运动影响血浆谷氨酰胺水平变化的机制。BAL/C小鼠不负重或2%负重不同强度游泳,每天2h,持续8周。与对照组比较,大强度游泳组动物血浆(0.46±0.10、0.12±0.02mmol/L,p<0.01)和肌肉(4.92±0.98、1.03±0.37mmol/L,p<0.01)中的谷氨酰胺浓度降低,骨骼肌谷氨酰胺合成酶活性抑制(1874±191、1246±220nmol/min/g蛋白,p<0.01);而中等强度游泳升高血浆谷氨酰胺浓度(0.64±0.06mmol/L,p<0.01)。小鼠在中等强度运动时,谷氨酰胺代谢表现了积极的代偿变化。但在大强度运动时,动物的体重增长减缓,血浆和肌肉谷氨酰胺水平均大幅度降低。结果提示,导致血浆谷氨酰胺水平降低的机制之一是骨骼肌中的谷氨酰胺合成酶抑制。  相似文献   

9.
Although the link between sagittal plane motion and exercise intensity has been highlighted, no study assessed if different workloads lead to changes in three-dimensional cycling kinematics. This study compared three-dimensional joint and segment kinematics between competitive and recreational road cyclists across different workloads. Twenty-four road male cyclists (12 competitive and 12 recreational) underwent an incremental workload test to determine aerobic peak power output. In a following session, cyclists performed four trials at sub-maximal workloads (65, 75, 85 and 95% of their aerobic peak power output) at 90?rpm of pedalling cadence. Mean hip adduction, thigh rotation, shank rotation, pelvis inclination (latero-lateral and anterior–posterior), spine inclination and rotation were computed at the power section of the crank cycle (12 o'clock to 6 o'clock crank positions) using three-dimensional kinematics. Greater lateral spine inclination (p?p?p?相似文献   

10.
Power output and heart rate were monitored for 11 months in one female (V(.)O(2max): 71.5 mL · kg?1 · min?1) and ten male (V(.)O(2max): 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

11.
采用ME6000表面肌电仪和SONY高速摄像机对沈阳体育学院9名优秀速度滑冰运动员在模拟滑道训练中进行同步分析。结果表明:速度滑冰运动员侧蹬腿与支撑腿表面肌电原始电压有显著差异,左右伸膝肌群(腓外、腓内)在滑行过程中放电高于其他肌群;左腿为侧蹬腿时,半腱肌在膝关节折叠成小角度时放电最为明显;双支撑阶段右腿屈伸肌群表面肌电标准化电压在膝关节角为110~120°时达到最大值,在膝关节角大于120°之后肌肉力量降低明显。  相似文献   

12.
We test the hypothesis that breathing oxygen-enriched air (F(I)O(2) = 100%) maintains exercise performance and reduces fatigue during intervals of maximal-intensity cycling. Ten well-trained male cyclists (age 25 ± 3 years; peak oxygen uptake 64.8 ± 6.2 ml · kg(-1) · min(-1); mean ± s) were exposed to either hyperoxic or normoxic air during the 6-min intervals between five 30-s sessions of cycling at maximal intensity. The concentrations of lactate and hydrogen ions [H(+)], pH, base excess, oxygen partial pressure, and oxygen saturation in the blood were assessed before and after these sprints. The peak (P = 0.62) and mean power outputs (P = 0.83) with hyperoxic and normoxic air did not differ. The partial pressure of oxygen was 4.2-fold higher after inhaling hyperoxic air, whereas lactate concentration, pH, [H(+)], and base excess (P ≥ 0.17) were not influenced. Perceived exertion towards the end of the 6-min periods after the fourth and fifth sprints (P < 0.05) was lower with hyperoxia than normoxia (P < 0.05). These findings demonstrate that the peak and mean power outputs of athletes performing intervals of maximal-intensity cycling are not improved by inhalation of oxygen-enriched air during recovery.  相似文献   

13.
Abstract

The direct effects of cycling on movement and muscle recruitment patterns (neuromuscular control) during running are unknown but critical to success in triathlon. We outline and test a new protocol for investigating the direct influence of cycling on neuromuscular control during running. Leg movement (three-dimensional kinematics) and muscle recruitment (surface electromyography, EMG) were compared between a control run (no prior exercise) and a 30-min transition run that was preceded by 20 min of cycling. We conducted three experiments investigating: (a) the repeatability (between-day reliability) of the protocol; (b) the ability of the protocol to investigate, in highly trained national or international triathletes, the direct influence of cycling on neuromuscular control during running independent of neuromuscular fatigue; and (c) the ability of the protocol to provide a control, or baseline, measure of neuromuscular control (determined using a measure of stability) without causing fatigue. Kinematic and EMG measures of neuromuscular control during running showed moderate to high repeatability: mean coefficients of multiple correlation for repeatability of EMG and kinematics were 0.816 ± 0.014 and 0.911 ± 0.031, respectively. The protocol provided a robust baseline measure of neuromuscular control during running without causing neuromuscular fatigue (coefficients of multiple correlation for stability of EMG and kinematics were 0.827 ± 0.023 and 0.862 ± 0.054), while EMG and force data provided no evidence of fatigue. The protocol outlined here is repeatable and can be used to measure any direct influence of cycling on neuromuscular control during running.  相似文献   

14.
‘A tribute to Dr J. Rogge’ aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge’s merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors’ muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30–40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking.

Highlights

  • Dr Jacques Rogge, former president of the International Olympic Committee and Olympic Finn sailor, was the first to study muscle activity during sailing using invasive needle EMG to obtain his Master degree in Sports Medicine at the Ghent University.

  • Hiking is a critical bilateral and multi-joint movement during dinghy racing, accounting for >60% of the total upwind leg time. Hiking generates large stresses in the anterior muscles that cross the knee and hip joint.

  • Hiking is considered as a quasi-isometric bilateral knee extension exercise. Muscle activity measurements during sailing, recorded by means of EMG, show a mean contraction intensity of 30-40% maximal voluntary contraction with peaks exceeding 100%.

  • Hiking performance is strongly related to the development of neuromuscular fatigue in the quadriceps muscle. Since maximal strength is an important determinant of neuromuscular fatigue during hiking, combined strength and endurance training should be incorporated in the training program of dinghy sailors.

  相似文献   

15.
为了揭示自行车运动时大腿和小腿肌群的氧代谢的特征及其肌肉活动量之间的关系,12名健康男子受试者在50、100、150、200、250W等5种负荷强度下,分别进行了6min的自行车踏蹬运动,并采用近红外线光谱和表面肌电图技术,对右侧下肢股四头肌和腓肠肌的氧合血红蛋白/肌红蛋白(oxy-Hb/Mb)与积分肌电图进行了连续性的同步测定。结果发现:股四头肌的oxy-Hb/Mb在50W至150W时下降比较缓慢,200W和250W时下降十分明显;iEMG在50W至150W时缓慢上升,200W和250W时迅速上升。腓肠肌的oxy-Hb/Mb50W至200W时缓慢下降,但在250W时发生快速下降现象;iEMG在50W至150W时缓慢上升,但在250W时则迅速增加。各负荷强度下股四头肌和腓肠肌的oxy-Hb/Mb与iEMG相互之间比较,分别具有明显的相关性。由此推测,运动中两肌的oxy-Hb/Mb整体水平变化及相互间差异,归结于运动时两肌的运动量和负担度。  相似文献   

16.
Free radical production increases during exercise and oxidative damage occurs in several tissues. We examined the effects of three different exercise tests on the pattern of change of erythrocyte enzyme antioxidant activities. The tests were a short maximal exercise test, a submaximal prolonged exercise test and a cycling stage during competition. The participants were amateur and professional cyclists with different training statuses and different basal erythrocyte antioxidant enzyme activities. The maximal test produced no changes in the erythrocyte antioxidant enzyme activities of amateur sportsmen. The submaximal test, performed at 80% of maximal oxygen uptake, decreased erythrocyte catalase (12%), glutathione peroxidase determined with H2O2 (14%) and glutathione reductase (16%); superoxide dismutase activity increased by about 25%. The cycling stage performed by professional cyclists increased erythrocyte catalase (29%) and glutathione reductase (10%) activities. The in vivo changes in glutathione reductase activity were confirmed by in vitro measurements: hydrogen peroxide decreased and the presence of catalase increased the activity of this enzyme. In conclusion, we suggest that the different erythrocyte antioxidant enzyme responses to diverse exercise tests can be explained by the effects of hydrogen peroxide and the superoxide anion on the antioxidant enzyme activities in erythrocytes.  相似文献   

17.
We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P < 0.05). In the biceps femoris muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P < 0.05). There were no significant differences in ARVs between the straight and curved sections for all three muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles.  相似文献   

18.
In this study, we examined the correlations between selected markers of isometric training intensity and subsequent reductions in resting blood pressure. Thirteen participants performed a discontinuous incremental isometric exercise test to volitional exhaustion at which point mean torque for the final 2-min stage (2min-torque(peak)) and peak heart rate peak (HR(peak)) were identified. Also, during 4 weeks of training (3 sessions per week, comprising 4?×?2?min bilateral leg isometric exercise at 95% HR(peak)), heart rate (HR(train)), torque (Torque(train)), and changes in EMG amplitude (ΔEMG(amp)) and frequency (ΔEMG(freq)) were determined. The markers of training intensity were: Torque(train) relative to the 2min-torque(peak) (%2min-torque(peak)), EMG relative to EMG(peak) (%EMG(peak)), HR(train) ΔEMG(amp), ΔEMG(freq), and %MVC. Mean systolic (-4.9 mmHg) and arterial blood pressure (-2.7mmHg) reductions correlated with %2min-torque(peak) (r?=?-0.65, P?=?0.02 and r?=?-0.59, P?=?0.03), ΔEMG(amp) (r?=?0.66, P?=?0.01 and r?=?0.59, P?=?0.03), ΔEMG(freq) (r?=?-0.67, P?=?0.01 and r?=?-0.64, P?=?0.02), and %EMG(peak) (systolic blood pressure only; r?=?-0.63, P?=?0.02). These markers best reflect the association between isometric training intensity and reduction in resting blood pressure observed after bilateral leg isometric exercise training.  相似文献   

19.
Respiratory muscle fatigue has been reported following short bouts of high-intensity exercise, and prolonged, moderate-intensity exercise, as evidenced by decrements in inspiratory and expiratory mouth pressures. However, links to functionally relevant outcomes such as breathing effort have been lacking. The present study examined dyspnoea and leg fatigue during a treadmill marathon in nine experienced runners. Maximal inspiratory and expiratory pressure, peak inspiratory and expiratory flow, forced vital capacity, and forced expiratory volume in one second were assessed before, immediately after, and four and 24 hours after a marathon. During the run, leg effort was rated higher than respiratory effort from 18 through 42 km (P < 0.05). Immediately after the marathon, there were significant decreases in maximal inspiratory pressure and peak inspiratory flow (from 118 +/- 20 cm H(2)O and 6.3 +/- 1.4 litres x s(-1) to 100 +/- 22 cm H(2)O and 4.9 +/- 1.5 litres x s(-1) respectively; P < 0.01), while expiratory function remained unchanged. Leg maximum voluntary contraction force was significantly lower post-marathon. Breathing effort correlated significantly with leg fatigue (r = 0.69), but not inspiratory muscle fatigue. Our results confirm that prolonged moderate-intensity exercise induces inspiratory muscle fatigue. Furthermore, they suggest that the relative intensity of inspiratory muscle work during exercise makes some contribution to leg fatigue.  相似文献   

20.
Eccentric contractions that provide spring energy can also cause muscle damage. The aim of this study was to explore leg and vertical stiffness following muscle damage induced by an eccentric exercise protocol. Twenty active males completed 60 minutes of backward-walking on a treadmill at 0.67 m/s and a gradient of ? 8.5° to induce muscle damage. Tests were performed immediately before; immediately post; and 24, 48, and 168 hours post eccentric exercise. Tests included running at 3.35 m/s and hopping at 2.2 Hz using single- and double-legged actions. Leg and vertical stiffness were measured from kinetic and kinematic data, and electromyography (EMG) of five muscles of the preferred limb were recorded during hopping. Increases in pain scores (over 37%) occurred post-exercise and 24 and 48 hours later (p < 0.001). A 7% decrease in maximal voluntary contraction occurred immediately post-exercise (p = 0.019). Changes in knee kinematics during single-legged hopping were observed 168 hours post (p < 0.05). No significant changes were observed in EMG, creatine kinase activity, leg, or vertical stiffness. Results indicate that knee mechanics may be altered to maintain consistent levels of leg and vertical stiffness when eccentric exercise-induced muscle damage is present in the lower legs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号