首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purposes of this study were to validate the 12-min swim as a field test of VO2 peak in female recreational swimmers and to compare its validity with that of the 12-min run. The results are contrasted with those previously reported on a comparable group of male recreational swimmers. Thirty-four young women completed 12-min swim, 12-min run, tethered swimming VO2 peak, and treadmill running VO2 peak tests within 3 weeks. Mean (+/- SD) 12-min swim and run distances were 597 +/- 82 and 2,313 +/- 317 m, and mean tethered swim and treadmill run VO2 peak values were 39.2 +/- 4.9 and 45.4 +/- 6.3 ml.kg BW-1.min-1, respectively. Correlation coefficients and standard errors of estimate for predictions of swimming VO2 peak from the 12-min swim (.42 and 4.5 ml.kg BW-1.min-1) and run (.58 and 4.1 ml.kg BW-1.min-1) and for predictions of treadmill run VO2 peak from the 12-min swim (.34 and 6.0 ml.kg BW-1.min-1) and run (.87 and 3.2 ml.kg BW-1.min-1) indicated that the 12-min run was a more accurate predictor of tethered swim or treadmill run VO2 peak than the 12-min swim. These data are in close agreement with our previous study on young male recreational swimmers. We conclude that the 12-min swim has relatively low validity as a field test of peak aerobic power and that it is not an equally valid alternative to the 12-min run in young adult female recreational swimmers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cardiorespiratory and body composition changes were evaluated in 25 sedentary females, aged 18 to 30 years, following 12 weeks of aerobic dance training (3 days a week, 45 min a session). Fifteen subjects, from the same population, comprised a control group: they maintained their normal activity and dietary habits over the course of the study. Analysis of variance of the values for selected cardiorespiratory responses revealed that the aerobic dance programme produced training effects in the experimental group. These training effects were indicated by significant improvements in O2 pulse, VE, heart rate and perceived exertion during submaximal exercise. Significant improvements were also noted in VO2 max, maximal O2 pulse, VE max, maximal heart rate and maximal running time on the treadmill. Additionally, increases in lean body mass and body density, together with decreases in percentage body fat and the sum of four skinfold thicknesses were found to be significant for the experimental group. No significant improvements in any of these variables were found for the control group. It was concluded that this 12-week aerobic dance programme was successful in promoting beneficial changes in cardiorespiratory fitness and body composition.  相似文献   

3.
The purpose of the present investigation was to examine the concurrent and construct validity of the three-mile (4.83 km) run as a field test of aerobic capacity. Subjects included 109 college-aged males whose three-mile run time (M = 1310.31 +/- 184.48 s) was measured. Fifty of the subjects were given a maximal treadmill stress test, and their peak oxygen consumption (VO2peak) (M = 54.23 +/- 7.08 ml.kg-1.min-1) was measured. The three-mile run was conducted on an outdoor 0.25 mile (0.425 km) track, and split times were recorded each 110 yds (100.32 m) for the first and last laps and total time was recorded for laps 2 through 11. The correlation coefficient between the run time and VO2peak was -.58, indicating only moderate concurrent validity for the run as a field test for aerobic capacity. A factor analysis conducted on the split time data revealed a three-factor structure of a stable pace phase, an initial sprint, and a final sprint with the stable pace factor accounting for most of the common factor variance (69%). The three-mile run time was used to discriminate successfully between two known groups of subjects in aerobic capacity. These data provide a degree of support for the construct validity of the three-mile run as a field test of aerobic capacity.  相似文献   

4.
The aim of this study was to investigate the effects of extensive endurance training (15-25 h per week) on the development of maximal oxygen uptake (VO2 max) in boys from puberty. Maximal oxygen uptake was measured a number of times each year from the age of puberty and for the next 6-9 years in seven young male elite cross-country skiers. Mean VO2 max was measured as 76.3 and 80.1 ml kg-1 min-1 at the ages of 14 and 15 years respectively. Despite the fast rate of growth during puberty, maximal aerobic power showed seasonal variations from the age of 14, reaching a plateau at the age of 15, whereas VO2 max (ml kg-2/3 min-1) increased continuously. It is concluded that, during puberty, boys probably attain significant increases in VO2 max when appropriate amounts of endurance training are undertaken.  相似文献   

5.
The influences of growth, training and various training methods were investigated by analysing long-term training effects in young cross-country and biathlon skiers (n = 129). Some athletes (n = 49) were studied six times in three years and some at least once a year during a four year period (n = 48). During three summer training periods skiers emphasized either intensive training or distance training or continued to train normally. The results indicated that maximal oxygen uptake (VO2 max) and heart volume increased between 15 and 20 years of age and the most significant changes in heart volume were observed between 16 and 18 years of age. International level skiers were able to increase their VO2 max and heart volume even after 20 years of age. Anaerobic threshold (AT, ml kg-1 min-1) increased like VO2 max but when expressed as a percentage of VO2 max, the AT was similar in every age group over 16 years of age. Intensive training at the intensity of anaerobic threshold or higher was observed to be most effective in producing improvements in VO2 max. Low-intensity distance training was more effective in producing improvements in anaerobic threshold.  相似文献   

6.
Thirty-eight female subjects (M +/ SD = 33 +/- 3.0 years) had VO2max measured on the cycle ergometer (M +/- SD = 37.3 +/- 6.4 ml.kg-1.min-1) and on the treadmill (M +/- SD = 41.3 +/- 6.6 ml.kg-1.min-1). VO2max was estimated for each subject from heart rate (HR) at submaximal workloads on the cycle ergometer using the Astrand-Rhyming nomogram (A/R) and the extrapolation method (XTP). VO2max was also estimated from three field tests: 1.5-mile run (RUN) (independent variable [IV] = time), mile walk (WALK) (IV = time, age, HR, gender, body weight), and the Queens College Step Test (ST) (IV = HR during 5-20 s recovery). Repeated measure ANOVA revealed significant mean differences between the criterion cycle ergometer VO2max versus A/R and XTP (20 and 12% overestimation). The WALK, RUN, and ST VO2max values were not significantly different from the criterion treadmill VO2max. The correlation between criterion VO2max estimated from the WALK and RUN were r = .73 (SEE = 4.57 ml,kg-1.min-1) and r = .79 (SEE = 4.13 ml.kg-1.min-1), respectively. The ST, A/R, and XTP had higher SEEs (13-13.5% of the mean) and lower r s (r = .55 to r = .66). These results suggest both the WALK and RUN tests are satisfactory predictors of VO2max in 30 to 39-year-old females.  相似文献   

7.
The aim of this study was to determine the incidence of subject drop-out on a multi-stage shuttle run test and a modified incremental shuttle run test in which speed was increased by 0.014m.s-1 every 20-m shuttle to avoid the need for verbal speed cues. Analysis of the multi-stage shuttle run test with 208 elite female netball players and 381 elite male lacrosse players found that 13 (+/-3) players stopped after the first shuttle of each new level, in comparison with 5 (+/-2) players on any other shuttle. No obvious drop-out pattern was observed on the incremental shuttle run test with 273 male and 79 female undergraduate students. The mean difference between a test-retest condition (n= 20) for peak shuttle running speed (-0.03+/- 0.01m.s-1) and maximal heart rate (0.4+/- 0.1 beats.min-1) on the incremental test showed no bias (P > 0.05). The 95% absolute confidence limits of agreement were 0.11m.s-1 for peak shuttle running speed and +/-5 beats.min-1 for maximal heart rate. The relationship (n= 27) between peak shuttle running speed on the incremental shuttle run test (4.22+/- 0.14m.s-1) and VO2max (59.0+/- 1.7ml.kg-1.min-1) was r=0.91 (P< 0.01), with a standard error of prediction of 2.6ml.kg-1.min-1. These results suggest verbal cues during the multi-stage shuttle run test may influence subject drop-out. The incremental shuttle run test shows no obvious drop-out patten and provides a valid estimate of VO2max.  相似文献   

8.
The purpose of this study was threefold: to determine (a) the test-retest reliability of the 20-m shuttle test (20 MST) (number of laps), (b) the concurrent validity of the 20 MST (number of laps), and (c) the validity of the prediction equation for VO2max developed by Léger, Mercier, Gadoury, and Lambert (1988) on Canadian children for use with American children 12-15 years old. An intraclass coefficient of .93 was obtained on 20 students (12 males; R = .91 and 8 females; R = .87) who completed the test twice, 1 week apart (MT1 = 47.80 +/- 20.29 vs. MT2 = 50.55 +/- 22.39 laps; p > or = .13). VO2peak was obtained by a treadmill test to volitional fatigue on 48 subjects. The number of laps run correlated significantly with VO2peak in males (n = 22; r = .65; F [1, 20] = 14.30 p < or = .001), females (n = 26; r = .51; F [1, 24] = 8.34; p < or = .01), and males and females = (r = .69; F [1, 46] = 42.54, p < or = .001). When the measured VO2peak (M = 49.97 +/- 7.59 ml.kg-1.min-1) was compared with the estimated VO2max (M = 48.72 +/- 5.72 ml.kg-1.min-1) predicted from age and maximal speed of the 20 MST (Léger et al., 1988) no significant difference was found, t (47) = -1.631; p > or = .11, between the means; the r was .72 and SEE was 5.26 ml.kg-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Clear criteria for maximal oxygen consumption (VO2max) determination in youth are not available, and no studies have examined this issue in girls. Our purpose was to determine whether different peak heart rate (HRpeak) and peak respiratory exchange ratio (RERpeak) cut points affect girls' (N = 453; M age = 13.3 years, SD = .1) VO2max during a maximal treadmill test. A multivariate analysis of variance revealed VO2max (ml kg(-1) min(-1) differed significantly among HRpeak, 180-189 b min(-1) = 34 (SD = .8), 190-194 bmin(-1) = 35 (SD = .9), 195-199 b min(-1) = 38 (SD = .8), 200-204 b min(-1) = 40 ml kg1 x min(-1) (SD = .8), and > or = 205 bmin(-1) = 42 ml kg1 x min(-1) (SD = .7) but not RERpeak. In studies where evidence of a VO2 plateau was examined, peak oxygen consumption (VO2peak) did not differ between plateau and no-plateau groups. Although our results suggest the association between lower VO2peak and lower peak heart rate is a true cardiovascular limit to aerobic energy production, we cannot rule out participant effort.  相似文献   

10.
To determine the energy cost of low impact aerobic dance while varying arm movement height and the use of hand weights, 10 adults volunteered to participate in four choreographed trials. All trials consisted of identical leg movements. Arm movements, however, were performed above shoulder level both with and without 0.9-kg hand weights and below shoulder level both with and without 0.9-kg hand weights. Open circuit spirometry was employed throughout the 10-min videotape guided trials, and heart rate was measured by telemetry. Neither the use of hand weights nor the change in arm position height significantly altered the energy cost of low impact aerobic dance. However, heart rate responses were significantly different. Caution should be observed by aerobics instructors and participants as to the use of heart rate as an indicator of intensity for low impact aerobic dance.  相似文献   

11.
Oxygen uptake (VO2) during treadmill exercise is directly related to the speed and grade, as well as the participant's body weight. To determine whether body composition also affects VO2 (ml.kg-1.min-1) during exercise, we studied 14 male body builders (M weight = 99 kg, SD = 7; M height = 180 cm, SD = 8; M body fat = 8%, SD = 3; M fat free mass = 91 kg, SD = 7) and 14 weight-matched men (M weight = 99 kg, SD = 9; M height = 179 cm, SD = 5; M body fat = 24%, SD = 5; M fat free mass = 73 kg, SD = 9). Percentage of body fat, t(13) = 8.185, p < .0001, and fat free mass, t(13) = 5.723, p < .0001, were significantly different between groups. VO2 was measured by respiratory gas analysis at rest and during three different submaximal workrates while walking on the treadmill without using the handrails for support. VO2 was significantly greater for the lean, highly muscular men at rest: 5.6 +/- 1 vs. 4.0 +/- 1 ml.kg-1.min-1, F(1, 26) = 21.185, p < .001; Stage 1: 1.7 mph/10%, 18.5 +/- 2 vs. 16.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 6.002, p < .05; Stage 2: 2.5 mph/12%, 26.6 +/- 3 vs. 23.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 7.991, p < .01; and Stage 3:3.4 mph/14%, 39.3 +/- 5 vs. 33.5 +/- 5 ml.kg-1.min-1, F(1, 26) = 7.682, p < .01, body builders versus weight-matched men, respectively. However, net VO2 (i.e., exercise VO2 - rest VO2) was not significantly different between the two groups at any of the matched exercise stages. The findings from this study indicate that VO2 during weight-bearing exercise performed at the same submaximal workrate is higher for male body builders compared to that measured in weight-matched men and that which is predicted by standard equations. These observed differences in exercise VO2 appear to be due to the higher resting VO2 in highly muscular participants.  相似文献   

12.
Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption (VO2) determined every 15 s. The mean (+/- s) time-trial time was 359 +/- 33 s, with a mean power output of 65 +/- 16 W and mean stroke rate of 56 +/- 4 strokes min(-1). Mean values for peak VO2, peak heart rate, and mean heart rate were 3.17 +/- 0.67 litres min(-1), 177 +/- 11 beats min(-1), and 164 +/- 12 beats min(-1) respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak VO2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

13.
This investigation was undertaken in an effort to establish physiological characteristics of soccer players and to relate them to positional roles. A total of 135 footballers (age 24.4 +/- 4.6 years) were assessed for body mass, % body fat, haemoglobin, maximal oxygen uptake (VO2 max), leg power, anaerobic capacity and speed prior to an English league season. The sample included 13 goalkeepers, 22 full-backs, 24 centre-backs, 35 midfield players and 41 forwards. The goalkeepers were significantly heavier (86.1 +/- 5.5 kg; P < 0.01) than all groups except the centre-backs, had significantly higher estimated body fat percentages than centre-backs, forwards, midfield players (P < 0.01) or full-backs (P < 0.05), significantly lower estimated VO2 max values (56.4 +/- 3.9 ml kg-1 min-1; P < 0.01) and were slowest over 60 m (12.71 +/- 0.42 s). The midfield players had the highest predicted VO2 max values (61.4 +/- 3.4 ml kg-1 min-1), this being significantly greater (P < 0.05) than for the centre-backs. The forwards were the fastest group over 60 m (12.19 +/- 0.30 s), being significantly quicker than goalkeepers or centre-backs (P < 0.01) and full-backs (P < 0.05). Anaerobic power, as well as knee extensor torques (corrected for body mass) and extensor-flexor ratios, were similar between groups. No difference in estimated body fat percentage was observed between any of the outfield players, and haemoglobin concentrations were similar among players of all positions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The multistage 20 metre shuttle run test for aerobic fitness   总被引:18,自引:2,他引:16  
A maximal multistage 20 m shuttle run test was designed to determine the maximal aerobic power of schoolchildren, healthy adults attending fitness class and athletes performing in sports with frequent stops and starts (e.g. basketball, fencing and so on). Subjects run back and forth on a 20 m course and must touch the 20 m line; at the same time a sound signal is emitted from a prerecorded tape. Frequency of the sound signals is increased 0.5 km h-1 each minute from a starting speed of 8.5 km h-1. When the subject can no longer follow the pace, the last stage number announced is used to predict maximal oxygen uptake (VO2max) (Y, ml kg-1 min-1) from the speed (X, km h-1) corresponding to that stage (speed = 8 + 0.5 stage no.) and age (A, year): Y = 31.025 + 3.238 X - 3.248A + 0.1536AX, r = 0.71 with 188 boys and girls aged 8-19 years. To obtain this regression, the test was performed individually. Right upon termination VO2 was measured with four 20 s samples and VO2max was estimated by retroextrapolating the O2 recovery curve at time zero of recovery. For adults, similar measurements indicated that the same equation could be used keeping age constant at 18 (r = 0.90, n = 77 men and women 18-50 years old). Test-retest reliability coefficients were 0.89 for children (139 boys and girls 6-16 years old) and 0.95 for adults (81 men and women, 20-45 years old).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The physiological responses to skating and the incidence of injuries were recorded in young, Danish elite figure skaters (n = 8) over a 1-year period. The skaters' maximum oxygen uptake (VO2 max) ranged from 54.7 to 68.8 ml kg-1 min-1, and work intensity during simulated competitive figure skating corresponded to 89% VO2 max. Before the onset of competitive skating, but after a warm-up, blood lactate (BLa) concentration was measured as 2.0 +/- 0.05 mM (means +/- S.E.). After a 4-min run, BLa increased to 8.0 +/- 0.6 mM. The subjects' resting heart rates were measured each morning over a 1-year period and corresponded to 53 +/- 2 and 58 +/- 3 beats min-1 for the males and females respectively, with no systematic season-related variations. The skaters trained for 15-41 h per week, 60-95 min of this time being spent on warm-up activities. The injury incidence rate during competitive skating was recorded as 1.4 injuries per 1000 h of training, 56% of these being acute and 44% chronic injuries. Of those injuries registered, 83% were recalled by the skaters when a retrospective questionnaire was given to them at the end of the observation period. This study indicates that ice figure skating is associated with high aerobic power. Furthermore, Danish skaters spend large amounts of time on training, including warm-up and stretching. Despite the amount of training and the intensity of ice-skating programmes, injury rates are low compared with other sporting events.  相似文献   

16.
The purpose of the study was to relate three determinants of distance running success, (a) maximal oxygen consumption (VO2max), (b) ventilatory threshold (VT), and (c) running economy (RE), to actual running time in a 5-km race (ART). Twenty-four female runners (M age = 15.9 years) from four high school teams that competed at the Massachusetts All-State 5-km Cross Country Championship Meet and placed 1st, 7th, 19th, and 20th were tested in the laboratory. The mean VO2max of these runners was 61.7 ml.kg-1.min-1, HRmax 201 b.min-1, VEmax 100 L.min-1, and RER 1.10. The VT occurred at 79% of the VO2max, and HR of 184 b.min-1 (92% of HRmax). The velocity at VT (vVT) and velocity at VO2max (vVO2max) was correlated with ART, r(22) = .78 and .77 (p less than .001), respectively. The VO2 at VT and at maximal exercise was correlated with ART by r(22) = -.66 and -.69 (p less than .001), respectively. The VO2 at 215 m.min-1 (8 mph) was poorly related to ART, r(22) = -.05, p greater than .05. It was concluded that either of the derived variables vVT and vVO2max appear to explain significant variation in distance running performance among adolescent female cross country runners.  相似文献   

17.
This study examined the relationship between expired non-metabolic CO2 (exCO2) and the accumulation of blood lactate. Particular emphasis was placed on the ventilatory (exCO2 and VE/VO2) and lactate threshold relationship. A total of 21 elite cyclists (15 males, 6 females) performed a progressive intensity bicycle ergometer test during which ventilatory parameters were monitored on-line at 15-s intervals, and blood lactate sampling occurred at each minute. Transition threshold values were determined for each of the three indices: excess CO2 (TexCO2), VE/VO2 (Tvent) and blood lactate (Tlac). The three threshold values (TexCO2, Tvent, Tlac) all correlated significantly (P less than 0.001) when each was expressed as an absolute VO2 (l min-1). A significant ANOVA (F = 8.41, P less than 0.001) and post-hoc correlated t-tests demonstrated significant differences between the TexCO2 and Tlac (P less than 0.001) and the TexCO2 and Tvent values (P less than 0.025). The Tlac occurred at an average blood lactate concentration of 3.35 mM, while the mean expired excess CO2 volume at the TexCO2 was 14.04 ml kg-1 min-1. Over an 11-min range across the threshold values (TexCO2 and Tlac), which were used as relative points of reference, the expired excess CO2 volume (ml kg-1 min-1) and blood lactate concentration (mM) correlated significantly (r = 0.69, P less than 0.001). Higher individual correlations over the same period of time (r = 0.82-0.96, P less than 0.001) stress the individual nature of this relationship. These results indicate a strong relationship between the three threshold values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

19.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

20.
The aim of the present study was to determine maximal oxygen uptake (VO2max) directly during uphill walking exercise and to compare these values with those achieved during running and cycling exercise. Forty untrained students (20 males and 20 females) took part in three exercise tests. The running test was performed on a horizontal treadmill and the speed was gradually increased by 0.3 m . s(-1) every 3 min. The walking test was conducted on a treadmill inclined at 12% (speed of 1.8 m . s(-1)). The load was further increased every 3 min by the addition of a mass of one-twentieth of the body mass of the participant (plastic containers filled with water and added to a backpack carried by the participant). During the bicycle ergometry test, the workload was increased by 20 W every 2 min. All tests were performed until volitional exhaustion. During all tests, oxygen uptake, minute ventilation, tidal volume, respiratory frequency, heart rate, hydrogen ion concentration, base excess, and blood lactate concentration were analysed. The Pearson correlation coefficients between the weighted walking test and the commonly applied running and bicycle ergometry tests indicate a strong association with the new test in evaluating maximal oxygen uptake. The negligible differences in VO2max between the three tests for the male participants (running: 61.0 ml . kg(-1) . min(-1); walking: 60.4 ml . kg(-1) . min(-1); cycling: 60.2 ml . kg(-1) . min(-1)), and the fact that the females achieved better results on the walking test than the cycle ergometer test (running: 45.0 ml . kg(-1) . min(-1); walking: 42.6 ml . kg(-1) . min(-1); cycling: 40.1 ml . kg(-1) . min(-1)), confirm the suitability of the new method for evaluating aerobic power. The weighted walking test could be useful in the assessment of aerobic power in individuals for whom running is not advised or is difficult. In addition, the new test allows for determination of VO2max on small treadmills with a limited speed regulator, such as those found in specialist physiotherapy and fitness centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号