首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of growth, training and various training methods were investigated by analysing long-term training effects in young cross-country and biathlon skiers (n = 129). Some athletes (n = 49) were studied six times in three years and some at least once a year during a four year period (n = 48). During three summer training periods skiers emphasized either intensive training or distance training or continued to train normally. The results indicated that maximal oxygen uptake (VO2 max) and heart volume increased between 15 and 20 years of age and the most significant changes in heart volume were observed between 16 and 18 years of age. International level skiers were able to increase their VO2 max and heart volume even after 20 years of age. Anaerobic threshold (AT, ml kg-1 min-1) increased like VO2 max but when expressed as a percentage of VO2 max, the AT was similar in every age group over 16 years of age. Intensive training at the intensity of anaerobic threshold or higher was observed to be most effective in producing improvements in VO2 max. Low-intensity distance training was more effective in producing improvements in anaerobic threshold.  相似文献   

2.
Maximal oxygen uptake VO(2max)) is considered the optimal method to assess aerobic fitness. The measurement of VO(2max), however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O(2max) and maximal power output in 247 children (139 boys and 108 girls) aged 7.9-11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W x min(-1) increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: VO(2max) (ml x min(-1)) = 96 + 10.6 x maximal power + 3.5 . body mass. Using this reference equation, estimated VO(2max) per unit of body mass (ml x min(-1) x kg(-1)) calculated from maximal power correlated closely with the direct measurement of VO(2max) (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2+/-2.9 (ml x min(-1) x kg(-1)) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for VO(2max) in population studies of children aged 8-11 years.  相似文献   

3.
Endurance running performance in athletes with asthma   总被引:1,自引:0,他引:1  
Laboratory assessment was made during maximal and submaximal exercise on 16 endurance trained male runners with asthma (aged 35 +/- 9 years) (mean +/- S.D.). Eleven of these asthmatic athletes had recent performance times over a half-marathon, which were examined in light of the results from the laboratory tests. The maximum oxygen uptake (VO2max) of the group was 61.8 +/- 6.3 ml kg-1 min-1 and the maximum ventilation (VEmax) was 138.7 +/- 24.7 l min-1. These maximum cardio-respiratory responses to exercise were positively correlated to the degree of airflow obstruction, defined as the forced expiratory volume in 1 s (expressed as a percentage of predicted normal). The half-marathon performance times of 11 of the athletes ranged from those of recreational to elite runners (82.4 +/- 8.8 min, range 69-94). Race pace was correlated with VO2max (r = 0.863, P less than 0.01) but the highest correlation was with the running velocity at a blood lactate concentration of 2 mmol l-1 (r = 0.971, P less than 0.01). The asthmatic athletes utilized 82 +/- 4% VO2max during the half-marathon, which was correlated with the %VO2max at 2 mmol l-1 blood lactate (r = 0.817, P less than 0.01). The results of this study suggest that athletes with mild to moderate asthma can possess high VO2max values and can develop a high degree of endurance fitness, as defined by their ability to sustain a high percentage of VO2max over an endurance race. In athletes with more severe airflow obstruction, the maximum ventilation rate may be reduced and so VO2max may be impaired. The athletes in the present study have adapted to this limitation by being able to sustain a higher %VO2max before the accumulation of blood lactate, which is an advantage during an endurance race. Therefore, with appropriate training and medication, asthmatics can successfully participate in endurance running at a competitive level.  相似文献   

4.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

5.
The multistage 20 metre shuttle run test for aerobic fitness   总被引:18,自引:2,他引:16  
A maximal multistage 20 m shuttle run test was designed to determine the maximal aerobic power of schoolchildren, healthy adults attending fitness class and athletes performing in sports with frequent stops and starts (e.g. basketball, fencing and so on). Subjects run back and forth on a 20 m course and must touch the 20 m line; at the same time a sound signal is emitted from a prerecorded tape. Frequency of the sound signals is increased 0.5 km h-1 each minute from a starting speed of 8.5 km h-1. When the subject can no longer follow the pace, the last stage number announced is used to predict maximal oxygen uptake (VO2max) (Y, ml kg-1 min-1) from the speed (X, km h-1) corresponding to that stage (speed = 8 + 0.5 stage no.) and age (A, year): Y = 31.025 + 3.238 X - 3.248A + 0.1536AX, r = 0.71 with 188 boys and girls aged 8-19 years. To obtain this regression, the test was performed individually. Right upon termination VO2 was measured with four 20 s samples and VO2max was estimated by retroextrapolating the O2 recovery curve at time zero of recovery. For adults, similar measurements indicated that the same equation could be used keeping age constant at 18 (r = 0.90, n = 77 men and women 18-50 years old). Test-retest reliability coefficients were 0.89 for children (139 boys and girls 6-16 years old) and 0.95 for adults (81 men and women, 20-45 years old).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Thirty-eight female subjects (M +/ SD = 33 +/- 3.0 years) had VO2max measured on the cycle ergometer (M +/- SD = 37.3 +/- 6.4 ml.kg-1.min-1) and on the treadmill (M +/- SD = 41.3 +/- 6.6 ml.kg-1.min-1). VO2max was estimated for each subject from heart rate (HR) at submaximal workloads on the cycle ergometer using the Astrand-Rhyming nomogram (A/R) and the extrapolation method (XTP). VO2max was also estimated from three field tests: 1.5-mile run (RUN) (independent variable [IV] = time), mile walk (WALK) (IV = time, age, HR, gender, body weight), and the Queens College Step Test (ST) (IV = HR during 5-20 s recovery). Repeated measure ANOVA revealed significant mean differences between the criterion cycle ergometer VO2max versus A/R and XTP (20 and 12% overestimation). The WALK, RUN, and ST VO2max values were not significantly different from the criterion treadmill VO2max. The correlation between criterion VO2max estimated from the WALK and RUN were r = .73 (SEE = 4.57 ml,kg-1.min-1) and r = .79 (SEE = 4.13 ml.kg-1.min-1), respectively. The ST, A/R, and XTP had higher SEEs (13-13.5% of the mean) and lower r s (r = .55 to r = .66). These results suggest both the WALK and RUN tests are satisfactory predictors of VO2max in 30 to 39-year-old females.  相似文献   

7.
The aim of this study was to determine the alterations in oxygen uptake kinetics following endurance training in previously trained athletes. Sixteen competitive cyclists completed 8 weeks of supervised endurance cycle training. Ventilatory threshold, maximal oxygen uptake (VO2max), oxygen uptake kinetics and simulated 40-km time-trial tests were performed three times over a 4-week period before training, and then after 4 and 8 weeks of training. The protocol for measuring oxygen uptake kinetics consisted of three square-wave increments from unloaded cycling to a power output of 78 W followed by a single increment from 78 to 156 W. No significant differences in any variables were observed over the pre-training period. The ventilatory threshold and VO2max increased, and the time for 40 km decreased (P < 0.05) with training. Shorter VO2 time constants and lower heart rates were observed during the protocol for measuring oxygen uptake kinetics (same absolute power output) post-training. These results indicate that oxygen uptake kinetics may be improved with endurance training in previously trained athletes.  相似文献   

8.
The aims of the present study were to assess the maximal oxygen uptake and body composition of adult Chinese men and women, and to determine how these variables relate to age. The cross-sectional sample consisted of 196 men and 221 women aged 20 - 64 years. Maximal oxygen uptake (VO2max) was determined by indirect calorimetry during a maximal exercise test on an electrically braked cycle ergometer. The correlations between VO2max and fat mass were -0.52 in men and -0.58 in women. Linear regression defined the cross-sectional age-related decline in VO2max as 0.35 ml kg(-1) min(-1) year(-1) in men and 0.30 ml kg(-1) min(-1) year(-1) in women. Multiple regression analysis showed that more than 50% of this cross-sectional decline in VO2max was due to fat mass, lean mass, and age. Adding fat mass and lean mass to the multiple regression models reduced the age regression mass from 0.35 to 0.24 ml kg(-1) min(-1) year(-1) in men and from 0.30 to 0.15 ml kg(-1) min(-1) year(-1) in women. We conclude that age, fat mass, and lean mass are independent determinants of maximal oxygen uptake in Chinese adults.  相似文献   

9.
The purpose of the study was to relate three determinants of distance running success, (a) maximal oxygen consumption (VO2max), (b) ventilatory threshold (VT), and (c) running economy (RE), to actual running time in a 5-km race (ART). Twenty-four female runners (M age = 15.9 years) from four high school teams that competed at the Massachusetts All-State 5-km Cross Country Championship Meet and placed 1st, 7th, 19th, and 20th were tested in the laboratory. The mean VO2max of these runners was 61.7 ml.kg-1.min-1, HRmax 201 b.min-1, VEmax 100 L.min-1, and RER 1.10. The VT occurred at 79% of the VO2max, and HR of 184 b.min-1 (92% of HRmax). The velocity at VT (vVT) and velocity at VO2max (vVO2max) was correlated with ART, r(22) = .78 and .77 (p less than .001), respectively. The VO2 at VT and at maximal exercise was correlated with ART by r(22) = -.66 and -.69 (p less than .001), respectively. The VO2 at 215 m.min-1 (8 mph) was poorly related to ART, r(22) = -.05, p greater than .05. It was concluded that either of the derived variables vVT and vVO2max appear to explain significant variation in distance running performance among adolescent female cross country runners.  相似文献   

10.
This investigation was undertaken in an effort to establish physiological characteristics of soccer players and to relate them to positional roles. A total of 135 footballers (age 24.4 +/- 4.6 years) were assessed for body mass, % body fat, haemoglobin, maximal oxygen uptake (VO2 max), leg power, anaerobic capacity and speed prior to an English league season. The sample included 13 goalkeepers, 22 full-backs, 24 centre-backs, 35 midfield players and 41 forwards. The goalkeepers were significantly heavier (86.1 +/- 5.5 kg; P < 0.01) than all groups except the centre-backs, had significantly higher estimated body fat percentages than centre-backs, forwards, midfield players (P < 0.01) or full-backs (P < 0.05), significantly lower estimated VO2 max values (56.4 +/- 3.9 ml kg-1 min-1; P < 0.01) and were slowest over 60 m (12.71 +/- 0.42 s). The midfield players had the highest predicted VO2 max values (61.4 +/- 3.4 ml kg-1 min-1), this being significantly greater (P < 0.05) than for the centre-backs. The forwards were the fastest group over 60 m (12.19 +/- 0.30 s), being significantly quicker than goalkeepers or centre-backs (P < 0.01) and full-backs (P < 0.05). Anaerobic power, as well as knee extensor torques (corrected for body mass) and extensor-flexor ratios, were similar between groups. No difference in estimated body fat percentage was observed between any of the outfield players, and haemoglobin concentrations were similar among players of all positions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The physiological responses to skating and the incidence of injuries were recorded in young, Danish elite figure skaters (n = 8) over a 1-year period. The skaters' maximum oxygen uptake (VO2 max) ranged from 54.7 to 68.8 ml kg-1 min-1, and work intensity during simulated competitive figure skating corresponded to 89% VO2 max. Before the onset of competitive skating, but after a warm-up, blood lactate (BLa) concentration was measured as 2.0 +/- 0.05 mM (means +/- S.E.). After a 4-min run, BLa increased to 8.0 +/- 0.6 mM. The subjects' resting heart rates were measured each morning over a 1-year period and corresponded to 53 +/- 2 and 58 +/- 3 beats min-1 for the males and females respectively, with no systematic season-related variations. The skaters trained for 15-41 h per week, 60-95 min of this time being spent on warm-up activities. The injury incidence rate during competitive skating was recorded as 1.4 injuries per 1000 h of training, 56% of these being acute and 44% chronic injuries. Of those injuries registered, 83% were recalled by the skaters when a retrospective questionnaire was given to them at the end of the observation period. This study indicates that ice figure skating is associated with high aerobic power. Furthermore, Danish skaters spend large amounts of time on training, including warm-up and stretching. Despite the amount of training and the intensity of ice-skating programmes, injury rates are low compared with other sporting events.  相似文献   

12.
The effect of inspiratory muscle training for 10 min twice a day for 27.5 days was evaluated in 20 human subjects, of whom 10 formed a training group and 10 a sham training group. The maximal oxygen uptake (VO2 max), maximal ventilation, breathing frequency during maximal exercise and the distance run in 12 min on a track were determined in addition to resting peak expiratory flow, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), with alveolar oxygen tension (pAO2) during maximal exercise being calculated. Inspiratory muscle training increased maximal inspiratory pressure from 93 (range 38-118) to 110 (65-165) mmHg in the training group (P less than 0.0005), but did not affect VO2 max, ventilation during maximal exercise, peak expiratory flow, FEV1 or FVC. However, breathing frequency during maximal exercise decreased slightly from 56 (44-87) to 53 (38-84) breaths min-1 (P less than 0.05) in the training group only; but the calculated pAO2 did not increase from the pre-training value of 126 (116-132) mmHg. The maximal distance run during 12 min increased similarly in the training and sham training groups by 8% (3-12%) and 6% (2-12%), respectively (P less than 0.01). The results of this study show that inspiratory muscle training resulting in a 32% (0-85%) increase in maximal inspiratory pressure does not change FEV1, FVC, peak expiratory flow, VO2 max or work capacity.  相似文献   

13.
儿童最大有氧活动能力的追踪研究   总被引:4,自引:0,他引:4  
报告了60名10~15岁儿童(31名男童,29名女童)最大有氧活动能力的追踪研究结果。应用Jaeger LE/6型步行机运动,使用Jaeger自动气体分析仪作气体分析,发现男女童的VO_2max、VO_2max/Ht、VO_2max/Ht~2及VO_2max/HR均随年龄增长而增加,VO_2max/Wt及VO_2max/LBM均未随年龄而增长的规律。男童VO_2max绝对值及各项相对值均明显高于女童。以生活年龄为基础的VO_2max年增长值,男童呈随年龄增长而增加的趋势,女童除13~14岁外,呈随年龄增长而减少的趋势;VO_2max/Wt年增长值男女童在年龄组间均未见到规律性的变化。以身高突增高峰年龄(PHA)为基础的VO_2max,男童从PHA-2到PHS 2持续增加,女童从PHA-1到PHA 1呈下降趋势,以后略有上升;VO_2max/Wt年增长值,男童在PHA前为负值,以后为正值并逐渐增加,女童无规律性变化。以生活年龄或以身高突增高峰年龄为基础的最大吸氧量年增长值的个体差异都很大。  相似文献   

14.
The purpose of this study was threefold: to determine (a) the test-retest reliability of the 20-m shuttle test (20 MST) (number of laps), (b) the concurrent validity of the 20 MST (number of laps), and (c) the validity of the prediction equation for VO2max developed by Léger, Mercier, Gadoury, and Lambert (1988) on Canadian children for use with American children 12-15 years old. An intraclass coefficient of .93 was obtained on 20 students (12 males; R = .91 and 8 females; R = .87) who completed the test twice, 1 week apart (MT1 = 47.80 +/- 20.29 vs. MT2 = 50.55 +/- 22.39 laps; p > or = .13). VO2peak was obtained by a treadmill test to volitional fatigue on 48 subjects. The number of laps run correlated significantly with VO2peak in males (n = 22; r = .65; F [1, 20] = 14.30 p < or = .001), females (n = 26; r = .51; F [1, 24] = 8.34; p < or = .01), and males and females = (r = .69; F [1, 46] = 42.54, p < or = .001). When the measured VO2peak (M = 49.97 +/- 7.59 ml.kg-1.min-1) was compared with the estimated VO2max (M = 48.72 +/- 5.72 ml.kg-1.min-1) predicted from age and maximal speed of the 20 MST (Léger et al., 1988) no significant difference was found, t (47) = -1.631; p > or = .11, between the means; the r was .72 and SEE was 5.26 ml.kg-1.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The aims of this study were to quantify the effects of factors such as mode of exercise, body composition and training on the relationship between heart rate and physical activity energy expenditure (measured in kJ x min(-1)) and to develop prediction equations for energy expenditure from heart rate. Regularly exercising individuals (n = 115; age 18-45 years, body mass 47-120 kg) underwent a test for maximal oxygen uptake (VO2max test), using incremental protocols on either a cycle ergometer or treadmill; VO2max ranged from 27 to 81 ml x kg(-1) x min(-1). The participants then completed three steady-state exercise stages on either the treadmill (10 min) or the cycle ergometer (15 min) at 35%, 62% and 80% of VO2max, corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and respiratory exchange ratio data were collected during each stage. A mixed-model analysis identified gender, heart rate, weight, V2max and age as factors that best predicted the relationship between heart rate and energy expenditure. The model (with the highest likelihood ratio) was used to estimate energy expenditure. The correlation coefficient (r) between the measured and estimated energy expenditure was 0.913. The model therefore accounted for 83.3% (R2) of the variance in energy expenditure in this sample. Because a measure of fitness, such as VO2max, is not always available, a model without VO2max included was also fitted. The correlation coefficient between the measured energy expenditure and estimates from the mixed model without VO2max was 0.857. It follows that the model without a fitness measure accounted for 73.4% of the variance in energy expenditure in this sample. Based on these results, we conclude that it is possible to estimate physical activity energy expenditure from heart rate in a group of individuals with a great deal of accuracy, after adjusting for age, gender, body mass and fitness.  相似文献   

16.
Oxygen uptake (VO2) during treadmill exercise is directly related to the speed and grade, as well as the participant's body weight. To determine whether body composition also affects VO2 (ml.kg-1.min-1) during exercise, we studied 14 male body builders (M weight = 99 kg, SD = 7; M height = 180 cm, SD = 8; M body fat = 8%, SD = 3; M fat free mass = 91 kg, SD = 7) and 14 weight-matched men (M weight = 99 kg, SD = 9; M height = 179 cm, SD = 5; M body fat = 24%, SD = 5; M fat free mass = 73 kg, SD = 9). Percentage of body fat, t(13) = 8.185, p < .0001, and fat free mass, t(13) = 5.723, p < .0001, were significantly different between groups. VO2 was measured by respiratory gas analysis at rest and during three different submaximal workrates while walking on the treadmill without using the handrails for support. VO2 was significantly greater for the lean, highly muscular men at rest: 5.6 +/- 1 vs. 4.0 +/- 1 ml.kg-1.min-1, F(1, 26) = 21.185, p < .001; Stage 1: 1.7 mph/10%, 18.5 +/- 2 vs. 16.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 6.002, p < .05; Stage 2: 2.5 mph/12%, 26.6 +/- 3 vs. 23.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 7.991, p < .01; and Stage 3:3.4 mph/14%, 39.3 +/- 5 vs. 33.5 +/- 5 ml.kg-1.min-1, F(1, 26) = 7.682, p < .01, body builders versus weight-matched men, respectively. However, net VO2 (i.e., exercise VO2 - rest VO2) was not significantly different between the two groups at any of the matched exercise stages. The findings from this study indicate that VO2 during weight-bearing exercise performed at the same submaximal workrate is higher for male body builders compared to that measured in weight-matched men and that which is predicted by standard equations. These observed differences in exercise VO2 appear to be due to the higher resting VO2 in highly muscular participants.  相似文献   

17.
The effects of strength training of the quadriceps on peak power output during isokinetic cycling has been investigated in group of 17 young healthy volunteers. Subjects trained by lifting near-maximal loads on a leg extension machine for 12 weeks. Measurements of maximal voluntary isometric force were made at 2-3 week intervals and a continual record was kept of the weights lifted in training. Peak power output was measured at 110 rev min-1 and at either 70 or 80 rev min-1 before and after the 12 week training period. Measurements of maximum oxygen uptake (VO2max) were made on 12 subjects before and after training. The greatest change was in the weights lifted in training which increased by 160-200%. This was accompanied by a much smaller increase in maximum isometric force (3-20%). There was no significant change in peak power output at either speed. The VO2max remained unchanged with training. The role of task specificity in training is discussed in relation to training regimes for power athletes and for rehabilitation of patients with muscle weakness.  相似文献   

18.
运动对无氧阈、最大吸氧量的影响与心功能的关系   总被引:3,自引:0,他引:3  
两年游泳系统训练后,男女运动员VO2max绝对值和相对值都无显著性变化,无氧阈明显提高。表明,AT的显著改善并不需要VO2max明显提高。训练后,AT和心泵血功能都有显著性提高,并且CO与AT的相关比CO与VO2max相关更为密切,提示,AT提高与心泵血功能变化有关,心功能可能是影响AT的重要因素。训练使心脏舒张功能得以改善,这是心脏对运动的又一适应。  相似文献   

19.
本文以文献资料法、专家访谈法,实验法为研究方法,以山东省淄博市理工大学校足球队的队员为研究对象,随机分成两组,实验组1进行传统的耐力训练;实验组2结合技战术进行有球的耐力训练,三个月之后以最大摄氧(VO2max)、无氧功率(P)、血乳酸(BL)为指标,将两组测得的指标数值进行统计分析与对比,结果显示有球的耐力训练方法优越于传统的耐力训练法,有利于提高运动员的综合能力,并且有效地提高该校校足球队运动员耐力水平,为普通高校足球耐力训练提供指导。  相似文献   

20.
This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号