首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在平面向量中,我们把式子a·b=(a+b)2-(a-b)2-(a-b)2/4称为极化恒等式,其中a+b与a-b的几何意义是以向量a、b为邻边的平行四边形的两条对角线。可以使用极化恒等式的条件是a-b和a+b其中之一是可知的。在每年考查平面向量的高考题  相似文献   

2.
<正>初中代数中有一个常用的恒等式:4ab=(a+b)2-(a-b)2-(a-b)2,它由两个完全平方公式相减而成.而今在高中向量中有一个类似的恒等式:4ab=(a+b)2,它由两个完全平方公式相减而成.而今在高中向量中有一个类似的恒等式:4ab=(a+b)2-(a-b)2-(a-b)2或ab=((a+b)/2)2或ab=((a+b)/2)2-((a-b)/2)2-((a-b)/2)2,称之为极化恒等式.它有如下几何意义:如图1,△ABC中,取BC的  相似文献   

3.
<正>本文通过一道解三角形问题,多角度利用"中点"条件解决问题.题目在ABC中,点D是BC边上的中点.若∠BAC=60°,AB=2,AD=3/2,求AC.解法1利用互补角设BD=DC=x,AC=y,由cos 60°=(22+y2+y2-(2x)2-(2x)2)/(2·2y),得4x2)/(2·2y),得4x2-y2-y2+2y-4=0.(1)由cos∠BDA+cos∠CDA=0,得  相似文献   

4.
<正>等积法是初中数学中常见的一种解题方法,利用这一方法解决某些问题,能化难为易,化繁为简,下面举例供参考。一、求三角形的高例1(2014年贺州中考题)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=____.解析如图1,作AD⊥BC于点D,CE⊥AB于点E,由勾股定理,得AB=AC=25(1/2),BC=22(1/2),BC=22(1/2),AD=32(1/2),AD=32(1/2).由1/2BC·AD=1/2AB·CE,  相似文献   

5.
极化恒等式是泛函分析中联系内积与范数的公式,即(x,y)=1/4(||x+y||2+||x-y||2),由于范数本身就是有关矢量的函数,因此泛函数分析中的极化恒等式就可以迁移到高中平面向量中,得到高中阶段学生可理解的极化恒等式,即a·b=1/4[(a+b)2-(a-b)2].利用这种极化恒等式可以解决向量的数量积.  相似文献   

6.
结论1:已知三角形△ABC为直角三角形,设BC=a、AC=b、AB=c,若AD为斜边BC上的中线,则AD=a/2.对此结论初中生就熟练掌握了,但我们没有深入思考一下,如果说三角形是一般的三角形呢?有没有类似的结论呢?现探究如下:题目1设AD为三角形△ABC的中线,BC=a、AC=b、AB=c,求AD关于a、b、c的关系式.解因为AD为三角形中线,  相似文献   

7.
<正>本文结合实例,探讨如何构造直角三角形解题.一、计算与求值1.计算线段的长度例1如图1,△ABC中,∠A=15°,∠B=15°,AB=2,求边长AC,BC的长度.分析与思考过点A作BC边上的高AD.构造出直角三角形,转化为对直角三角形的求解.为方便计算,设AC=2x,那么BC=2x,AD=x,DC=3(1/2)x.由勾股定理,得AD(1/2)x.由勾股定理,得AD2+DB2+DB2=AB2=AB2,即有x2,即有x2+(2x+32+(2x+3(1/2)x)(1/2)x)2=22=22,解此方程求出x的值,那么△ABC的边长即可求出.  相似文献   

8.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

9.
<正>初中几何问题中有一类含有中线的题目,往往图形中找不到全等三角形,使不少同学感觉无法入手.此时只要适当作出辅助线,问题便可迎刃而解.这里举例分析,供同学们学习参考.例1已知ABC中,AB=5,AC=9,AD是BC边上的中线,求线段AD的取值范围.分析一个三角形只知道两边的长度,这个三角形是不确定的,则它的第三边上的  相似文献   

10.
中线线定理的表述是:设△ABC的三边AB=c,BC=a,AC=b,BC边上的中线长为ma,则ma2=1/2b2+1/2c2-1/4a2. 中线长定理有广泛的应用,下面举例说明. 例1 如图1,在△ABC中,∠BAC=90°,MN是BC边上的点,且BM=MN=NC,如果AM=4,AN=3,则MN=____. 解设AC=b,AB=c,BM=MN=NC=a,AM,AN分别是△ABN和△ACM的中线,则有42=1/2c2+1/2·32-1/4(2a)2, 32=1/2b2+1/2·42-1/4(2a)2,  相似文献   

11.
最近在阅读《中小学数学》2013年第4期苏斌、邵潇野的《读,<老师被学生难住后>所想到的》和2013年第9期廖永明的《三角形中一个结论的再证明》时,看到了如下结论:如图1,△ABC中,∠B=∠C,AD是BC边上的高,O为线段AD的中点,过O点的直线分别交线段AB和AC于M、N,若(AM)/(MB)=a/b(a>0,b>0,a/b≠1/3,且a/b≠1/2),则(AN)/(NC)=a/(2a-b).  相似文献   

12.
董林 《中等数学》2002,(1):23-24
命题 在非钝角△ABC中,设BC=a,AC=b,AB=c,ma为BC边上中线长,ωa为∠A的平分线长.则有证明:设s为△ABC半周长,则式①等价于  相似文献   

13.
对一个优美的半对称不等式的补充   总被引:2,自引:0,他引:2  
文 [1 ]给出了一个优美的半对称不等式 :命题 在非钝角△ABC中 ,设BC =a ,AC =b ,AB =c,ma 为BC边上的中线长 ,wa为∠A的平分线长 ,则有mawa≤b2 +c22bc .①受文 [1 ]的启发 ,笔者发现以下一个优美的半对称不等式 :命题 在任意△ABC中 ,设BC =a ,AC=b ,AB =c,ma 为BC边上的中线长 ,wa 为∠A的平分线长 ,则mawa≥(b +c) 24bc .②证明 :设p为△ABC的半周长 ,则式②等价于(b +c) 4 w2a ≤1 6b2 c2 m2a.③由角平分线公式wa =2bcp(p -a)b +c 和中线长公式ma=12 2 (b2 +c2 ) -a2 可知③ (b +c) 2 [(b +c) 2 -a2 ]    ≤4bc[2 (b…  相似文献   

14.
<正>平面向量在高考的考查中往往以运算功能出现,其中数量积为重点的题型居多,若在计算过程中多多考虑其数量积的几何意义,可达到意想不到的效果.同时培养学生的转化思想和数形结合能力.这里以数量积的问题为例,供同学们参考.【例1】(摘自江西金太阳重组卷)如图1,在△ABC中,AB=6,AC=4,AD是BC边上的高,→AD·→AC=4,则∠C=.  相似文献   

15.
一、(本题满分50分)如图,O、I分别为ABC的外心和内心,AD是BC边上的高,I在线段OD上.求证:△ABC的外接半径等于BC的旁切圆半径.注:△ABC的BC边上的旁切是与边AB、AC的延长线以及边BC相切的.证明 设AI的延长钱交圆ABC于K点,半径OK记为R.因为OK⊥BC,所以OK∥AD,从而AI/IK=AD/OK=c·sinB/R=2sinBsinC①AI/IK=S△ABI/S△KBI=[1/2AB·BI·SINB/2]/[1/2BK·BI·SIN(A B)/2]=AB/BK·[sinB/2/(cosC/2)]  相似文献   

16.
在 Rt△ABC中,AC=b,BC=a,斜边 AB 上的高为 h,则1/(h~2)=1/(a~2) 1/(b~2).它有点类似于勾股定理,加以推广,即得类似于正、余弦定理的命题.定理在任意△ABC 中,BC=a,CA=b,AB=c,BC、CA、AB 边上的高分别为 h_a、h_b、h_c,则有  相似文献   

17.
例1在△ABC中,AB=5,AC=9,AD是BC边上的中线,求线段AD的取值范围.  相似文献   

18.
<正>设a、b、c、S表示△ABC的三边长和面积.则有[1]a2+b2+b2+c2+c2≥432≥43(1/2) S.(1)这是著名的外森比克(Weisenb?ck)不等式.(1)已有很多种形式的加强,其中最著名的是费-哈不等式a(1/2) S.(1)这是著名的外森比克(Weisenb?ck)不等式.(1)已有很多种形式的加强,其中最著名的是费-哈不等式a2+b2+b2+c2+c2≥432≥43(1/2) S+(a-b)(1/2) S+(a-b)2+(a-b)2+(a-b)2+(a-b)2+(a-b)2(2)  相似文献   

19.
<正>人教A版数学必修5第20页习题13:△ABC的三边分别为a,b,c,边BC、CA、AB上的中线分别记为ma,mb,mc,应用余弦定理证明:m_a=1/2(2(b2+c2)-a2)(1/2),m_b=1/2(2(a2+c2)-b2)(1/2),m_b=1/2(2(a2+c2)-b2)(1/2),m_c=1/2(2(a2+b2)-c2)(1/2),m_c=1/2(2(a2+b2)-c2)(1/2).证明如图1,在△ADC中,由余弦定理,得  相似文献   

20.
借助空间向量,很容易推导出二面角有以下两个计算公式.(1)如图1,AB、AC、AD是空间自A引出的三条射线,所成角分别为θ1,θ2和θ,可求得二面角B-AC-D的大小(用θ1,θ2和θ的三角函数表示)解:作BC⊥AC于C,DE⊥AC于E,图1则BC和DE夹角度数即为二面角B-AC-D度数.设AB=a,AD=b.BC=BA AC,DE=DA AE,∴BC·DE=(BA AC)·(DA AE).asinθ1bsinθ2cos(BC·DE)=abcosθ abcosθ2cos(π-θ1) acosθ1bcos(π-θ2) acosθ1bcosθ2=abcosθ-abcosθ2cosθ1-acosθ1bcosθ2 acosθ1bcosθ2∴cos(BC,DE)=cosθsi-ncθo1ssiθn1θc2osθ…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号