首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

2.
<正>本文现将人教版八年级(下)中的一道习题及其逆命题在中考中的应用介绍如下,供初中师生教与学时参考.题目如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?解因为l_1∥l_2,所以S_(△ABC)=S_(△DBC)(同底等高的三角形面积相等).还可以画出与△ABC面积相等的三角形若干个,只要同底BC,第三个顶点在  相似文献   

3.
众所周知,若P为△ABC的重心,连结AP、BP、CP并延长分别交对边BC、CA、AB于D、E、F,则 S_(△DEF)=1/4S_(△ABC)。如果P为△ABC内的任意一点,那么S_(△DEF)和1/4S(△ABC)又有何大小关系呢?本文将回答这一问题。定理:若P为△ABC内的任意一点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则  相似文献   

4.
定理 设P是△ABC所在平面上一点,AP,BP,CP分别与对边BC,CA,AB所在的直线交于D,E,F,则AP/PD=AE/EC AF/FB. 证明 如图1,因为△APC和△BPC有公共边CP,故S_(△APC)/S_(△BPC)=AF/FB,同理S_(△APB)/S_(△BPC)=AE/EC。 图1 ∴AE/EC AF/FB=S_(△APC)/S_(△BPC) S_(△ABC)/S_(△BPC)=(S_(△ABC)-S_(△BPC))/S_(△BPC)=(S_(△ABC)/S_(△BPC)-1)=AD/PD-1=AP/PD。 即AP/PD=AE/EC AF/FB。  相似文献   

5.
题一 已知:在锐角△ ABC的外面作等边 △ ABD,△ BCE,△ ACF, O1, O2, O3分别为这三个等边三角形的中心 .求证:△ O1O2O3为等边三角形 . 许多学生看到本题后,都觉得无从下手,其实这道题只是下面这道题的延伸 . 题二 在锐角△ ABC的外面作等边△ ABD, △ BCE,△ ACF.求证: DC=BF=AE. 证明:先证题二 .如图 (1), ∵△ ABD和△ ACF都是等边三角形, ∴ AD=AB,AC=AF,∠ DAB=∠ CAF=60° . 又∵∠ DAC=∠ BAF=60°+∠ BAC, ∴△ DAC≌△ BAF, ∴ DC=BF. 同理可证△ DBC≌△ ABE, ∴ DC…  相似文献   

6.
题目:锐角△ABC中,∠A的平分线交BC于D,交△ABC的外接圆于点E,自点D分别作DM⊥AB于点M,DN⊥AC于N,证明:S_(△ABC)=S四边形AMEN,(IMO,28—2)。证法/:如图,作出△ABC外接圆直径AL,连接MN,LB,LC,LE,LM,LN。显然,DN,LC同时垂直于AC,DN∥LC,那么S_(△DCN)=S_(△DLN)。同理:S_(△SMB)=S_(△DLM), 则:S_(△ABC)=S四边形AMLN,  相似文献   

7.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

8.
定理 设A’、B’、C’分别在△ABC的三边BC、CA、AB上,若AC’:C’B=p,BA’:A’C=q,C’B:B’A=r,△ABC与△A’B’C’的面积为S与S_0.则S_0/S=pqr 1/(p 1)(q 1)(r 1)证 设△AB’C’、△BA’C’、△CB’A’的面积分别为S_1、S_2、S_3、则  相似文献   

9.
三角形内(外)角平分线定理三角形的内(或外)角平分线分对边所得两条线段和这个角的两边对应成比例。证明:这里采取利用三角形面积的证法。如图1,AD(AE)是△ABC的内角∠CAB(外角∠CAF)的平分线,作DG⊥AB,自D作AC的垂线交延长线于H,则DG=DH。于是 S_(ΔABD):S_(ΔACD)=(1/2AB×DG):(1/2AC×DH)=AB:AC又设BC与AD的夹角为α(锐角),则当以AD为底时△ADB与△ADC的高BM、CN分别为BDsinα,DCsinα。这样,S_(ΔADB):S_(ΔADC)=(1/2AD×BDsinα)  相似文献   

10.
战洪 《考试》2003,(11)
2003年全国高考数学新、旧课程卷(文科)第15题:在平面几何里,有勾股定理“设△ABC 的两边AB、AC 互相垂直,则 AB~2+AC~2=BC~2。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积间的关系,可以得出的正确结论是:“设三棱锥 A-BCD的三个侧面 ABC、ACD、ADB 两两互相垂直,则 S_(△ABC)~2+S_(△ACD)~2+S_(△ADB)~2=S_(△BCD)_~2.”该题把平面几何中直角三角形三边之间的关系  相似文献   

11.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

12.
题:在△ABC中,O是AB边的中点,E、F分别在AC、BC上。求证:△DEF的面积不超过△ADE与△BDF的面积之和。有一本初中数学复习资料对这题作如下的分析和证明。分析要证△DEF的面积不超过△ADE与△BDF的面积之和,只要证 S_(△ADE)+S_(△BDF)>S_(△DEF)…证明延长ED到G,使DG=ED。连结BG和FG,又AD=BD,(已知) ∠ADE=∠BDG,(对顶角相等) ∴△ADE≌  相似文献   

13.
1993年德国有一赛题: 设△ABC三边AB=c,BC=a,CA=b,延长AB到A″,使BA″=a,反向延长到B′,使AB′=b,类似得A′,C′,B″,C″,如图,证明:S_(A′B″B′C″C′A″)/S_(△ABC)≥13。(*)  相似文献   

14.
引例 如图1,D为 △ABC边BC上的一点,且 DE∥AC,DF ∥AB,△ABC面积记 为S_△,△BDE、△DCF 的面积分别记为S_1、S_2,□AEDF面积记为S'.  相似文献   

15.
在中学数学中所涉及的三角形面积公式很多,灵活地运用它,均会收到满意的效果,其中公式S_△=1/2bcsinA为证明平面几何中两个三角形面积相等开辟了一条蹊径,下面举几例供读者参考: 例1 如图1,在△ABC中,AB=AC,D为底边上任一点,作∠BDE=∠CDF,交两腰于E、F。求证:S_(△BDF)=S_(△CDE)。  相似文献   

16.
定理设圆锥高为h,底面半径为R,过顶点的截面的面积为S.则 1) 当R≥h时,S_(max)=1/2(R~2 h~2); 2)当R相似文献   

17.
第39届IMO试题解答   总被引:1,自引:0,他引:1  
1.在凸四边形ABCD中,两对角线AC与BD互相垂直,两对边AB与DC不平行,点P为线段AB及CD的垂直平分线的交点,且P在四边形ABCD的内部,证明:ABCD为圆内接四边形的充分必要条件是△ABP与△CDP的面积相等。 证明:先证必要性:即当A、B、C、D四点共圆时,有S_(△ABP)=S_(△CDP).  相似文献   

18.
题目阅读材料:如图1(1),△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r_1、r_2,腰上的高为h,连结AP,则S_(△ABP)+S_(△ACP)=S_(△ABC).即1/2AB·r_1+1/2AC·r_2=1/2AB·h.所以r_1+r_2=h(定值).  相似文献   

19.
学习几何当然要做题,如何在做题时收到更好的效果,如何进行自我提高,我认为变题训练是一个好方法,除了我们通常所说的简单交换已知和求证外,内容还可向深层变换,图形还可向复杂变化.下面以一例说明:题1:如图1,已知 B 是线段 AC 上任一点,以 AB、BC 为边作正△ABD,正△BCE,连结 AE、CD,求证:AE=CD(人教版九年义务教育教材初中几何第二册 P_(115),13题).分析:由 AB=BD,BE=BC,∠ABE=∠DBC,可得△ABE≌△DBC,从而得 AE=  相似文献   

20.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号