首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a lack of systematic investigations, which clarify the relations between NOS and science content learning. In this paper, we present the results of a study, conducted to investigate how NOS understanding relates to students’ acquisition of a proper understanding of the concept of energy. A total of 82 sixth and seventh grade students received an instructional unit on energy, with 41 of them receiving generic NOS instruction beforehand. This NOS instruction, however, did not result in students having higher scores on the NOS instrument. Thus, correlational analyses were performed to investigate how students’ NOS understanding prior to the energy unit related to their learning about science content. Results show that a more adequate understanding of NOS might relate to students’ perspective on the concept of energy and might support them in understanding the nature of energy as a theoretical concept. Students with higher NOS understanding, for example, seemed to be more capable of learning how to relate the different energy forms to each other and to justify why they can be subsumed under the term of energy. Further, we found that NOS understanding may also be related to students’ approach toward energy degradation—a concept that can be difficult for students to master—while it does not seem to have a substantive impact on students’ learning gain regarding energy forms, transformation, or conservation.  相似文献   

2.
Given the central importance of the Nature of Science (NOS) and Scientific Inquiry (SI) in national and international science standards and science learning, empirical support for the theoretical delineation of these constructs is of considerable significance. Furthermore, tests of the effects of varying magnitudes of NOS knowledge on domain‐specific science understanding and belief require the application of instruments validated in accordance with AERA, APA, and NCME assessment standards. Our study explores three interrelated aspects of a recently developed NOS instrument: (1) validity and reliability; (2) instrument dimensionality; and (3) item scales, properties, and qualities within the context of Classical Test Theory and Item Response Theory (Rasch modeling). A construct analysis revealed that the instrument did not match published operationalizations of NOS concepts. Rasch analysis of the original instrument—as well as a reduced item set—indicated that a two‐dimensional Rasch model fit significantly better than a one‐dimensional model in both cases. Thus, our study revealed that NOS and SI are supported as two separate dimensions, corroborating theoretical distinctions in the literature. To identify items with unacceptable fit values, item quality analyses were used. A Wright Map revealed that few items sufficiently distinguished high performers in the sample and excessive numbers of items were present at the low end of the performance scale. Overall, our study outlines an approach for how Rasch modeling may be used to evaluate and improve Likert‐type instruments in science education.  相似文献   

3.
For students to achieve the goals of the Next Generation Science Standards (NGSS) by Grade 12, thinking and acting like scientists and engineers must begin in the elementary grades. However, elementary teachers may find this challenging -because language arts and mathematics still dominate many classrooms—often at the expense of science. This essay examines the science skills elementary students are expected to learn and how teachers and administrators can approach the increased demands of NGSS.  相似文献   

4.
This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the Next Generation Science Standards (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are linked to the standards by their association with either the “practices of science” or “crosscutting concepts,” but curiously not with the recommendations for science content. The study investigated all aspects of NOS in NGSS including the accuracy and inclusion of the supporting exemplar statements and the relationship of NOS in NGSS to other aspects of NOS to support teaching and learning science. We found that while 92 % of these exemplars are acceptable, only 78 % of those written actually appear with the standards. “Science as a way of knowing” is a recommended NOS category in NGSS but is not included with the standards. Also, several other NOS elements fail to be included at all grade levels thus limiting their impact. Finally, NGSS fails to include or insufficiently emphasize several frequently recommended NOS elements such as creativity and subjectivity. The paper concludes with a list of concerns and solutions to the challenges of NOS in NGSS.  相似文献   

5.
The purpose of this study was to investigate the effects of two learning contexts for explicit-reflective nature of science (NOS) instruction, socioscientific issues (SSI) driven and content driven, on student NOS conceptions. Four classes of 11th and 12th grade anatomy and physiology students participated. Two classes experienced a curricular sequence organized around SSI (the SSI group), and two classes experienced a content-based sequence (the Content group). An open-ended NOS questionnaire was administered to both groups at the beginning and end of the school year and analyzed to generate student profiles. Quantitative analyses were performed to compare pre-instruction NOS conceptions between groups as well as pre to post changes within groups and between groups. Both SSI and Content groups showed significant gains in most NOS themes, but between-group gains were not significantly different. Qualitative analysis of post-instruction responses, however, revealed that students in the SSI group tended to use examples to describe their views of the social/cultural NOS. The findings support SSI contexts as effective for promoting gains in students’ NOS understanding and suggest that these contexts facilitate nuanced conceptions that should be further explored.  相似文献   

6.
The aim of this study is to validate an instrument measuring students’ academic behavioral skills and engagement—skills identified as vital for student achievement. We inspect the reliability and validity of the survey with respect to item fit, factorial structure, relations with academic performance, and the fairness of the items across student groups. The fairness analyses are critical to making valid comparisons between groups and across countries. Data comprising 8520 grade 10 students from four countries were analysed using item response theory. We found that both scales were multidimensional, acted fairly across students’ gender, country, immigrant-, and socio-economic background (after removing four items), and were positively and significantly correlated with self-reported and performance-based academic performance.  相似文献   

7.
8.
Research on students’ views on nature of science (VNOS) in Asian countries such as China is notably lacking. This study aimed to develop and validate an instrument to measure South China high school students’ VNOS. Based on the previously acquired qualitative data, the instrument included seven VNOS dimensions which reflect the crucial aspects of NOS indicated by the literature and/or the dominating ideology in China (i.e., Marxism). A sample (N = 604) was randomly divided into two groups used for exploratory analyses and confirmatory analyses. The results indicated that the instrument expressed satisfactory reliability and validity and the seven NOS dimensions could be explained by a higher-order dimension. That is, the data of this study supported the multi-dimensional framework that treats VNOS as comprising several more-or-less correlated dimensions. Two distinct dimensions, namely “Accumulative-Empirical Source” and “Pragmatic Justification” which have not been explicitly specified in the past literature, were found. In addition, the Chinese high school students generally held a constructivist/relativist-oriented view of all seven dimensions. Differences in gender and grade level were hardly observed in any dimension of the instrument. The findings are further discussed through a socio-cultural lens to enrich the current understanding of VNOS.  相似文献   

9.
Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators’ conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators’ conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students’ conceptual ecology of learning NOS.  相似文献   

10.
The Irish national discourse on curriculum and assessment reform at the Junior Cycle level has been fraught with controversy in the past two years. The introduction of the new curriculum and assessment framework in 2012 by the then Minister of Education, Ruairi Quinn has led to significant media coverage and teacher union response. In this paper, we argue that in the midst of the reaction toward the particular assessment elements of the framework, the focus has been lost on key revisions made in the draft science curriculum and assessment specification released in September 2014. A central aspect of the draft document released for consultation includes the introduction of a ‘Nature of Science’ (NOS) theme intended to be an overarching feature of all science teaching and learning. We examine the coverage of NOS in the draft document and analyze it relative to a model of NOS developed in our recent book. Our analysis illustrates that the draft science curriculum and assessment specification for Junior Cycle incorporates contemporary research and aligns the Irish curriculum with most features of NOS, although some aspects need further development including the articulation of a nuanced model of NOS. We highlight some future directions for curriculum and assessment development for a comprehensive, coherent and holistic coverage of NOS in Junior Cycle Science in Ireland.  相似文献   

11.
12.
Item stem formats can alter the cognitive complexity as well as the type of abilities required for solving mathematics items. Consequently, it is possible that item stem formats can affect the dimensional structure of mathematics assessments. This empirical study investigated the relationship between item stem format and the dimensionality of mathematics assessments. A sample of 671 sixth-grade students was given two forms of a mathematics assessment in which mathematical expression (ME) items and word problems (WP) were used to measure the same content. The effects of mathematical language and reading abilities in responding to ME and WP items were explored using unidimensional and multidimensional item response theory models. The results showed that WP and ME items appear to differ with regard to the underlying abilities required to answer these items. Hence, the multidimensional model fit the response data better than the unidimensional model. For the accurate assessment of mathematics achievement, students’ reading and mathematical language abilities should also be considered when implementing mathematics assessments with ME and WP items.  相似文献   

13.
14.
A research study, mainly based on the notion of ‘scientific literacy’ from the Programme for International Student Assessment (PISA) 2003 assessment framework, was carried out obtaining data from the administration of an open written questionnaire with items covering three central scientific processes—describing, explaining and predicting scientific phenomena; understanding scientific investigation; and interpreting scientific evidence and conclusions—to 30 experienced in‐service secondary school science teachers. The purpose was to analyse their views regarding the competences on the mentioned scientific processes assessed by Science PISA tests: which of the competences assessed were the most frequently identified by teachers, which of the competences they considered presenting difficulties for their students, and, finally, which activities they used in their classes to promote similar competences. Our results indicated that teachers had different perceptions of one or other scientific processes considered relevant for scientific literacy in the PISA framework. Their awareness of the expected students’ difficulties did not necessarily match the competences intended to be assessed by either PISA or what they thought to be assessed. Moreover, their views differed depending not only on the type of scientific process but also on the underlying subject. Concern about the students’ need of reading fluently with understanding and of paying special attention during the test time was also observed.  相似文献   

15.
科学教育是建设创新型国家、科教强国的重要支撑,培育更多优秀青少年学生学习和从事科技领域具有重要意义。“科学资本”由布迪厄的“资本”概念发展而来,被认为是预测青少年学生STEM职业期望的有效变量。为了更好地认识科学资本这一概念的本质及其教育价值,该文在对相关文献进行梳理的基础上,对科学资本的内涵进行了解析,对科学资本的构成维度进行了总结,对科学资本促进学生发展的价值进行了讨论,对如何将科学资本融入教育实践进行了介绍。该文认为具有丰富内涵的科学资本为审视科学教育提供了一个新的视角,为推进科学教育发展提供了新的着力点,即在培养学生科学素养的同时,应重视学生科学资本的发掘和构建;建议创设“学校—家庭—社会”协同育人环境,积极促进学生科学资本构建,增强学生与科学的亲密度,激励更多更优秀的学生在未来进入科技领域。科学资本及以其为导向的科学教学法为我国科学教育和科学教师培训提供了新的启示。  相似文献   

16.
Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.  相似文献   

17.
This study aimed to assess grade 10 Turkish students' and science teachers' conceptions of nature of science (NOS) and whether these conceptions were related to selected variables. These variables included participants' gender, geographical region, and the socioeconomic status (SES) of their city and region; teacher disciplinary background, years of teaching experience, graduate degree, and type of teacher training program; and student household SES and parents' educational level. A stratified sampling approach was used to generate a representative national sample comprising 2,087 students and 378 science teachers. After establishing their validity in the Turkish context, participants were administered a questionnaire comprising 14 modified “Views on Science‐Technology‐Society” (VOSTS) items to assess their views of certain aspects of NOS. A total of 2,020 students (97%) and 362 teachers (96%) completed the questionnaire. Participant responses were categorized as “naïve,” “have merit,” or “informed,” and the frequency distributions for these responses were compared for various groupings of participants. The majority of participants held naïve views of a majority of the target NOS aspects. Teacher views were mostly similar to those of their students. Teacher and student views of some NOS aspects were related to some of the target variables. These included teacher graduate degree and geographical region, and student household SES, parent education, and SES of their city and geographical region. The relationship between student NOS views and enhanced economic and educational capitals of their households, as well as the SES status of their cities and geographical regions point to significant cultural (specifically Western) and intellectual underpinnings of understandings about NOS. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 1083–1112, 2008  相似文献   

18.
The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students’ learning of science in this 3D way. We examined TCs’ ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs’ ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate’s ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.  相似文献   

19.
Developing pre-service science teachers’ epistemic insight remains a challenge, despite decades of research in related bodies of work such as the nature of science (NOS) in science education. While there may be numerous aspects to this problem, one critical element is that the NOS is a meta-concept that demands higher-order cognitive skills. One possible strategy to facilitate pre-service teachers’ understanding of epistemic aspects of science is visualisation. Visual representations of objects and processes can be tools for developing and monitoring understanding. Although the NOS and visualisation literatures have been studied extensively, the intersection of these bodies of literatures has been minimal. Incorporating visual tools on the NOS in teacher education is likely to facilitate teachers’ learning, eventually impacting their students’ learning of the NOS. The objective of this paper is to illustrate how the visual tools of scientific knowledge and practices aspects of the NOS can be integrated in science teacher education in order to develop pre-service teachers’ epistemic insight. The paper presents an empirical study that incorporated visual tools about the NOS in primary science teacher education. Data on 14 pre-service teachers’ are presented along with in-depth case studies of 3 pre-service teachers illustrating the influence of the teacher education intervention. The qualitative analysis of visual representations before and after the intervention as well as verbal data suggests that there was improvement in pre-service teachers’ perceptions of the NOS. Implications for future research on visualisation of the NOS are discussed.  相似文献   

20.
This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students’ perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation Protocol (RTOP), is conceptualised using the RTOP’s three construct domains: Lesson Design and Implementation; Content; and Classroom Culture. Data from 895 elementary students was used to develop the Rasch scale, which was assessed for item fit, invariance and dimensionality. Overall, the data conformed to the assumptions of the Rasch model. In addition, the structural relationships among the retained items of the Rasch model supported and validated the instrument for measuring the reformed science classroom environment theoretical construct. The application of the ESSCES in a research study involving fourth grade students provides evidence that educators and researchers have a reliable instrument for understanding the elementary science classroom environment through the lens of the students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号