首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

2.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

3.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

4.
换元是初中代数学习中非常重要的一种解题方法 ,它指的是在解题过程中有意识地把一个代数式看成一个整体 ,用字母表示。灵活地应用这种方法 ,可使解题简易、迅捷。一、分解因式例 1.分解因式 (x2 - x) 2 - 8x2 + 8x+ 12。解 :设 x2 - x=z,那么原式 =(x2 - x) 2 - 8(x2 - x) + 12=z2 - 8z+ 12 =(z- 2 ) (z- 6 )=(x2 - x- 2 ) (x2 - x- 6 )=(x- 2 ) (x+ 1) (x- 3) (x+ 2 )。二、化简二次根式例 2 .化简 x z - z xx z + z x-z x + x zz x - x z。解 :设 x =a,z =b,那么 x=a2 ,z=b2 。原式 =a2 b- ab2a2 b+ ab2 - ab2 + a2 bab2 - a2 b=a- ba+ b…  相似文献   

5.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

6.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

7.
分式运算经常涉及到通分 ,若能根据分式的结构特征 ,采取相应的通分方法和技巧 ,则不仅可驭繁为简、化难为易 ,而且可减少出错率 ,达到事半功倍之效。本文通过课本习题介绍分式通分的七种技巧。一、分解因式 ,约后通分例 1 .计算 :x2 2 xy y2x2 y xy2 - x2 - 2 xy y2x2 y- xy2 。解 :原式 =( x y) 2xy( x y) - ( x- y) 2xy( x- y)=x yxy - x- yxy=2 yxy=2x。二、通盘考虑 ,整体通分把题目中的多项式视为一个整体进行通分 ,比逐项通分计算量小、速度快。例 2 .计算 :x3x- 1- x2 - x- 1。解 :原式 =x3x- 1- ( x2 x 1)=x3 - ( x- 1) ( x2 x …  相似文献   

8.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

9.
因式分解的方法多种多样,现将其中最常用的九种变换方法例析如下.一、符号变换法例1把x2(x-4) 5x(4-x) 6(x-4)分解因式.分析:将5x(4-x)变形为-5x(x-4),即可提公因式(x-4)进行分解.解:原式=x2(x-4)-5x(x-4) 6(x-4)=(x-4)(x2-5x 6)=(x-4)(x-3)(x-2).二、指数变换法例2把xn 1 2xn xn-1分解因式.分析:以x的最低次幂xn-1为标准,将xn 1变形为xn-1·x2,xn变形为xn-1·x,即可提公因式xn-1进行分解.解:原式=xn-1·x2 2xn-1·x xn-1=xn-1(x2 2x 1)=xn-1(x 1)2.三、组合变换法例3把x2-6x-4y2 12y分解因式.分析:将题中各因式分组整理,第一项和第三项分为…  相似文献   

10.
因式分解的方法很多 ,灵活性大 ,因此 ,同学们在牢固掌握课本上所介绍的 4种基本方法的基础上 ,还需掌握如下的一些技巧 .1 拆项、添项例 1 分解因式x2 y2 -x2 -y2 -4xy +1.分析 :本题难于直接应用 4种基本方法进行分解 .然而 ,经观察不难发现 ,只要将 -4xy拆成 ( -2xy -2xy) ,分组后 ,便可利用公式法分解 .解 :原式 =(x2 y2 -2xy +1) -(x2 +y2 +2xy)=(xy -1) 2 -(x +y) 2=(xy +x +y -1) (xy -x -y -1) .例 2 分解因式x4+4 .分析 :只须添上 4x2 和 -4x2 ,即可利用公式 .解 :x4+4 =x4+4x2 +4 -4x2=(x2 +2 ) 2 -( 2x) 2=(x2 +2x +2 ) (x2 -…  相似文献   

11.
因式分解是初中代数的重要内容之一,它的解法变化多样,为帮助同学们学好这部分内容,本文以课本中的有关题目为例,说明常见变换技巧,供参考和选用.一、指数变换例1分解因式xn+1-3xn+2xn-1解:以指数最低的xn-1为标准,把xn+1、xn分别变换为x2·xn-1、x·xn-1,则原式=xn-1(x2-3x+2)=xn-1(x-1)(x-2)二、符号变换例2分解因式(a-b)(x-y)-(b-a)(x+y)解:将-(b-a)变换为a-b,则原式=(a-b)(x-y+x+y)=2(a-b)x三、部分项分解变换例3分解因式x2-6x+9-y2解:原式=(x-3)2-y2=(x+y+3)(x-y-3)四、系数变换例4分解因式81+3x3解:将3提取后便于运用立方和公式分解原…  相似文献   

12.
多项式护 y“十z“一3xyz分解方法如下: x“ y3=(x Jr)3一3xy(x y) (x y)3 23=(x y z)〔(x y)2一(x y)z 22〕 故有x3 y3 23一3xyz=(x y)3一3xy(x y) 23一3xyz =(x y z)〔(x y)2一(x y)z 22〕一3xy(x y z) =(x y z)(xZ yZ 22一xy一yz一xz) 即:x3七y3 23一3xyz=(x 了 z)(xZ yZ 22一xy一yz一xz) 如在复数范围内还可继续分解为: x3 y3 23一3xyz=(x y z)(x 。y 。22)(x 。Zy 。z) .。是1的三次虚根(1)式是个很重要的公式,应用广泛,现仅举几例说明之。 1.因式分解 公式(1)中如果x y z=0,则(1)式变为 x3 y3 23二3xyz(3)式说明:任意三数之和如为0…  相似文献   

13.
一、符号变换 例1 分解因式:z2(x-y)-4(x-y)-3z(y-x). 解:以(x-y)为标准,将(y-x)变换为-(x-y),则 原式=z2(x-y)-4(x-y)+3z(x-y) =(x-y)(z2 +3z-4) =(x-y)(z-1)(z+4) 二、指数变换 例2 分解因式:2xn+2+ 4xn-6xn2.  相似文献   

14.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

15.
同学们在学习分式的时候,经常会遇到有关多元的求值问题,解答时,可以利用消元的方法,化难为易.一、取值消元法例1已知abc=1,那么aab+a+1+bbc+b+1+cca+c+1=.解:不失一般性,取a=1,b=1,c=1,则原式=13+13+13=1. 二、主元消元法例2已知4x-3y-6z=0,x+2y-7z=0,则5x2+2y2-z22x2-3y2-10z2等于(A)-12 (B)-192 (C)-15(D)-13 解:以x、y为主元,那么4x-3y=6z,x+2y=7z .∴x=3z,y=2z.∴原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.选D. 三、比值消元法例3已知x2=y3=z4,则x2-2y2+3z2xy+2yz+3zx的值是.解:设x2=y3=z4=k,得x=2k,y=3k,z=4k…  相似文献   

16.
因式分解是初中数学的重要内容之一。因式分解题目千变万化,方法灵活多样,现举几例供同学们参考。例1分解因式(x2-2xy+y2)+(-2x+2y)+1.分析:若此题展开,这太复杂了。通过观察题目特点可将原式变形为(x-y)2-2(x-y)+1这样就易于分解了。解:原式=(x-y)2-2(x-y)+1=[(x-y)-1]2=(x-y-1)2.例2分解因式(x+1)(x+2)+41.分析:此题既没有公因式,又没有公式直接可用。可以先用整式乘法,重新整理然后分解。解:原式=x2+3x+2+41=x2+3x+49=(x+23)2.例3分解因式32004-32003.分析:此题从表面上看无法解,但通过观察,可逆用同底数幂的乘法法则,将32004化为32003×…  相似文献   

17.
■一、有公因式不提例1 分解因式8x3 - 32xy.错解:原式=x(8x2- 32y).例2 分解因式4x2yz + 16y2.错解:原式=4(x2yz+ 4y2).评析:提取公因式时,既要提取相同字母的最低次幂,也要提取各项系数的最大公约数,因为公因式包括公因数,否则,都是不正确的.正解:1.原式=8x(x2- 4y).2.原式= 4y(x2z + 4y).■二、公因式提不尽例3 分解因式3x(m - n) - 6y(n - m).错解:原式=3[x(m -n) - 2y(n - m)]=3(mx - nx - 2ny + 2my).评析:公因式既可以是单项式也可以是多项式,n - m可变形为- (m - n),因此,上题中的公因式应为3(m - n).正解:原式=3x(m - n) + 6y( …  相似文献   

18.
因式分解和整式乘法是互逆的恒等变形。除课本上介绍的四种基本方法外,现再介绍三种特殊方法和一些特殊的技巧。 (一)添项或折项法:有些多项式的分解不能直接分组,通常采用添项(添缺项〕或拆项再分组的方法。例1分解因式;(1)x~3 5x~2 3x-9; (2)x~3 3x~2 5x 3; (3) x~4 4。解:(1)原式=(x~3-x~2) (6x~2 3x-9)(拆项) =x~2(x-1) (x-1)(6x 9) =(x-1)(x 3)~2; (2) 原式=(x~3 x~2) (2x~2 5x 3) (拆项)  相似文献   

19.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

20.
妙在换元     
换元法是数学中重要的解题方法,对于一些较繁难的数学问题,用常规解法,或是无从下手,或是解题过程异常繁杂。这时,若能根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效。例题1 :分解因式(x y) (x y- 2 xy) (xy 1 ) (xy-1 )分析:式中x y,xy反复出现,按常规解法,则很繁且分解较难,若用两个新字母分别代替,则可达到化繁为简的目的,妙不可言。解:设x y=a,xy=b,则原式=a(a- 2 b) (b 1 ) (b- 1 )=a2 - 2 ab b2 - 1=(a- b) 2 - 1 2 =(a- b 1 ) (a- b- 1 )把a=x y,b=xy代回原式得原式=(x y- xy 1 ) (x y- xy- 1 )=(…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号