首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

2.
一、知识要点1.相似三角形的定义、性质和判定.2.重心定理.3.应用相似三角形的判定、性质以及重心定理进行计算和论证.二、解题指导例1如图1,在△ABC中,D是AB上一点,∠DCA=∠ABC,AD=9cm,DB=3cm,求AC的长.(西安市,1993年)分析设AC=xcm,于是要求AC的长,只要根据已知条件和图形的性质列出关于X的方程即可.∠DCA=∠ABC,∠A公用,例2如图2,在△ABC中,AB=AC,AD是BC边上的高,BE是AC边上的中线,BE交AD于G,且AD=9cm,BE=m,求S△ABC分析要求S。。。,只要求出BC的长、由题设易知,*D一0已从而要…  相似文献   

3.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

4.
不少几何题,虽然在给定的图形中没有明显的全等三角形,但我们可根据题目的特征巧妙地构造全等三角形,从而找到证题的思路. 一、平移法例1 已知△ABC中,AB=AC,E在AB上,F在AC的延长线上,且BE=CF,EF交BC于D,求证:DE=DF 分析:欲证DE=DF,图中无明显的全等三角形,这时可考虑去构造,过E作EG∥AF,交BC于G,只须证△DCF(?)△DGE即可.  相似文献   

5.
1 古籍轻断处,难度晚尤彰 学过初等平面几何的人都熟知外角定理,即三角形的任一外角大于每一个不与之相邻的内角. 它的传统证明可以表述为 题设 点D在△ABC的边BC的延长线上. 题断 ∠ACD>∠CAB,∠ACD>∠ABC. 证 取边AC的中点E.连结BE并且延长它到F,使EF=BE;作射线CF. 因为EC =EA,∠CEF=∠AEB(对顶角相等),EF=EB,所以△CEF≌△AEB(边角边).因此∠ECF=∠EAB,亦即∠ACF=∠CAB.而由于射线CF在∠ACD内,所以∠ACD>∠ACF,可见∠ACD> ∠CAB.  相似文献   

6.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

7.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

8.
几何综合题大多是圆与平行线、三角形、四边形、相似三角形、锐角三角函数等知识的综合运用 .同学们在总复习阶段 ,适量地研究一些不同类型综合题的解法 ,有助于对几何图形的识别 ,有助于加强对重要定理的理解 ,有助于所学知识的融会贯通 ,更有助于对不同类型习题解题规律的掌握 .图 1例 1 如图 1,AC切⊙O于点A ,AB、AD为⊙O的弦 ,AB =AC ,AD∥BC ,BC交⊙O于点E ,AO的延长线交BE于F ,AO与DE交于G .求证 :(1)四边形ADEC是平行四边形 ;(2 )EG2 =18CF·CB .证明 :(1)由已知 ,有∠B =∠C .又∠B =∠D ,则∠D =∠C .因为AD…  相似文献   

9.
定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB,DE=ccosC  相似文献   

10.
王静 《考试周刊》2013,(51):7-8
<正>一、原题呈现(2012凉山洲)如图1,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.解:(1)证明:∵四边形ABCD是矩形∴∠D=∠A=90°∴∠EBA+∠AEB=90°∵EF⊥BE,即∠BEF=90°∴∠DEF+∠AEB=90°∴∠DEF=∠EBA(同为∠AEB的余角)  相似文献   

11.
一、直接寻求相关相似三角形例1从直角三角形ABC的斜边AB的中点D引AB的垂线,分别与AC和BC的延长线交于E、F点,求证:CD2=DE·DF.分析:要证CD2=DE·DF,即证CDDE=DFCD,对照图1,易看出只要证C、D、E三点和C、D、F三点分别对应的三角形相似即可,即证△CDE∽△CDF。为此,还需证另一对角相等,易知∠A=∠F,而∠A=∠ACD,所以,∠F=∠ECD,得证。二、先寻找相等线段,替换求证式中的一条或两条线段,再寻求相关相似三角形例2CD是△ABC的∠C的平分线,它的垂直平分线和AB的延长线相交于E点,求证:DE是AE和BE的比例中项。分析:D…  相似文献   

12.
我们把三角形一个角的顶点与对边上一点的连线叫做三角形的角分线 .角分线有如下性质 :定理 三角形角分线分对边的比等于两邻边与其相应分角正弦积的比 .下面给出该定理的证明 .已知 :如图 1 ,D点在△ ABC的 BC边上 ,AD为∠ A的角分线 .求证 :BDDC=ABsin∠ BADACsin∠ CAD.图 1证明 :过 B、C向角分线AD所在直线作垂线 ,E、F为垂足 ,则 BE =BAsin∠ BAD,CF =ACsin∠ CAD.因为∠ BED =∠ CFD= Rt∠ ,∠ BDE =∠ CDF,所以△ BED∽△ CFD.所以 BDDC=BECF=sin∠ BADACsin∠ CAD.很明显 ,当角分线分成等角时 ,si…  相似文献   

13.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

14.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

15.
<正>一、平移全等模型例1如图1,点A,B,D,E在同一条直线上,AB=DE,AC//DF,BC//EF.求证:△ABC≌△DEF.解析:根据已知条件,利用“ASA”即可证出△ABC≌△DEF.∵AC//DF,∴∠CAB=∠FDE.∵BC//EF,∴∠CBA=∠FED.∵∠CAB=∠FDE,AB=DE,∠CBA=∠FED,∴△ABC≌△DEF(ASA).反思:可将图1看作是△ABC沿AB方向平移AD的长度得到的全等三角形模型.常见的平移全等三角形模型的呈现形式有图1、图2两种.  相似文献   

16.
在一次统一招生数学试题中有这样一道题;在四边形ABCD中,AB=CD,E、F为AD、BC的中点(如图1),延长EF交BA的延长成于G,交CD的延长线于H,求证∠BGF=∠CHF。本题证法很多,其中有一位考生是这样证明的: 连结EC,将△DCE绕E点顺时针方向旋转180°至△AC’E,D点转到A点的位置,C点转到C’的位置,这时,若连结C’B,则有∠3=∠4,故要证∠1=∠2,只要证明C’B∥EF,而已知BF=FC,又CF=FC’,得EF是△CC’B的中位线,问题得以解决。  相似文献   

17.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?…  相似文献   

18.
利用三角形全等证明线段相等、角相等是最常用、最基本的方法 .而有些竞赛题的图形中 ,没有已知的三角形全等 ,而是要利用已知和图形所提供的信息 ,构造一个或几个三角形与原有的三角形全等 ,从而使原来不明显的线段 (或角 )关系凸现出来 .现举例说明 .一、证明线段相等例 1  ( 1999年天津市初中数学竞赛题 )如图 1,已知在△ ABC中 ,AD是 BC边上的中线 ,E是 AD上的一点 ,且 BE =AC,延长 BE交 AC于 F.求证 :AF =EF.简析 :已知条件 BE =A C是分散的 ,在原图中难以利用 ,因此考虑添加适当的辅助线 .因为 AD是 BC边上的中线 ,往往…  相似文献   

19.
如图1,△ABC的角A,B,C所对之边分别为a,b,c.AD,BE,CF为三条高,H为垂心,则△DEF是垂足三角形.又命R和Δ分别为△ABC的外接圆半径和面积,文[1]给出了垂足三角形的周长l0和面积Δ0的公式:l0=4Rsin Asin Bsin C,(1)Δ0=2Δcos Acos Bcos C.(2)可惜其证明太长,现简证如下:先证(1)式.注意到B,C,E,F四点共圆,故有∠AFE=∠C.在△AEF中运用正弦定理,有EFsin A=sin∠AEAFE=cscions C A,所以EF=sinc C·sin Acos A.至此,EF与l0有两种表达式:其一,由于sinc C=sina A,所以EF=acos A.同理,FD=bcos B,DE=ccos C,因而l0=acos A b…  相似文献   

20.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号