首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
有一类函数的值域或最值可用实系数一元二次方程的根的判别式Δ去求解 .在解题过程中 ,我们要小心使用Δ .例 1 求函数 y =x2 -x - 1x2 -x 1(x∈R)的值域 .错解 :原式可化为 (y - 1)x2 - (y - 1)x y 1=0 .因为x∈R ,所以Δ =[- (y- 1) ]2 - 4 (y - 1) (y 1)≥ 0 ,解得 - 53≤y≤ 1,故原函数的值域为 - 53≤y≤ 1.分析原式在化为关于x的方程 (y - 1)x2 - (y - 1)x y 1=0后 ,在使用Δ时 ,忽略了二次项的系数 y - 1≠ 0的条件 ,须知只有限定 y - 1≠ 0时 ,才能用根的判别式Δ去求解 .正解 :因为x2 -x 1=x - 122 34≠ 0 ,所以原式可化…  相似文献   

2.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

3.
例1求函数y=x+5-x2√的最值.错解由y=x+5-x2√得2x2-2yx+(y2-5)=0.∵xR,∴Δ=4y2-8(y2-5)≥0,-10√≤y≤10√,∴ymax=10√,ymin=-10√.剖析把y=x+5-x2√两边平方后得(y-x)2=5-x2.显然,5-x2≥0,x的范围没有改变.错因是改变了值域.由y-x=5-x2√知y≥x,而把y-x=5-x2√两边平方后,值域发生了改变.正解由y=x+5-x2√得2x2-2yx+(y2-5)=0.∵xR,∵xR,∴Δ=4y2-8(y2-5)≥0,∴-10√≤y≤10√.又∵y≥x,-5√≤x≤5√,∴y≥-5√,-5√≤y≤10√.∴ymax=10√,ymin=-5√.例2求函数y=x2+2x+2x2+2x+5√的最小值.错解令t=x2+2x+5√,则x2+2x=t2-5.∴y=t2…  相似文献   

4.
20 0 1年全国高中数学竞赛第一试第 11题为 :函数 y =x + x2 - 3 x+ 2的值域为.下面提供五种解法 ,以飨读者 .解法 1 移项得 y- x=x2 - 3 x+ 2 ,上式等价于 (y- x) 2 =x2 - 3 x+ 2 ,y- x≥ 0 .12由 1得 x=y2 - 22 y- 3 ,代入 2得 y- y2 - 22 y- 3≥ 0 ,即 (y- 1) (y- 2 )2 y- 3 ≥ 0 ,解得 1≤ y<32 或y≥ 2 .故原函数的值域为 [1,32 )∪ [2 ,+∞ ) .解法 2 原函数式可变形为 y=x+(x- 32 ) 2 - 14,∵ x2 - 3 x+ 2≥ 0 ,∴ x≤ 1或 x≥ 2 .令 t=x- 32 ,则 t≤ - 12 或 t≥ 12 ,y=t+ 32 + t2 - 14.当 t≥ 12 时 ,y是 t的增函数 ,当 t=12时 ,…  相似文献   

5.
一、反函数策略例1求函数y=3-x2x+5的值域.分析此题可用“观察法”,但形如y=ax+bcx+d的值域问题,用反函数法尤为简洁.解函数y=3-x2x+5的反函数为y=3-5x2x+1,而y=3-5x2x+1的定义域为x|x≠-12 ,∴原函数的值域为y|y≠-12 .二、换元策略例2求函数y=2x+41-x姨的值域.分析可将原式2x移至等式左边后,再两边平方,用“Δ法”求解,但是值域范围有可能扩大.若令t=1-x姨≥0,则x=1-t2,从而将原式转化为在限制条件下,即t≥0时二次函数的值域问题.解令t=1-x姨≥0,则x=1-t2,故原式为y=2穴1-t2雪+4t=-2穴t-1)2+4≤4,∴原函数的值域为(-∞,4].三、数形结合…  相似文献   

6.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

7.
一策——直接法有的函数的结构并不复杂,可以通过基本函数的值域及不等式性质直接观察出函数的值域.【例1】求函数y=x21 2的值域.解:∵x2≥0∴x2 2≥2∴0相似文献   

8.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

9.
在一个函数关系式中,如果含自变量的一边是两个二次根式的和,且这两个二次根式的平方和等于一个正实数,那么可用方差公式求出这个函数的最大值.下面举例说明.例1求函数y=3-x 2 x的最大值.解由原函数式可知y>0.∵3-x和2 x这两个数的方差是:s2=12[(3-x)2 (2 x)2-22y2]≥0.整理,得10-y2≥0,即y2≤10,∴y最大值=10.例2求函数y=4x3 5 13-4x3的最大值.解由原函数式可知y>0.∵4x3 5和13-4x3这两个数的方差是:s2=21[(4x3 5)2 (13-4x3)2-22y2]≥0.整理,得36-y2≥0,即y2≤36,∴y最大值=6.例3求函数y=2x2 3x 1 7-2x2-3x的最大值.解由原函数式可知y>0.∵…  相似文献   

10.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

11.
在求形如 y =ax2 bx cdx2 ex f的值域时 ,可将函数转化为关于x的二次方程 ,通过判别式求出函数的值域 .但利用Δ法求函数值域时应注意以下两个问题 .1 .如果函数 y =ax2 bx cdx2 ex f(d≠ 0 )的分母含关于x的二次三项式 ,分子的最高次是二次或一次或零次 ,函数的定义域为R ,可采用Δ法求函数的值域 .例 1 求函数 y=2x2 2x 3x2 x 1 的值域 .解 :令 g(x) =x2 x 1 ,其Δ =1 2 -4=-3 <0 ,∴故 g(x) =x2 x 1 >,函数 g(x)的定义域为R .∴已知函数可化成(y -2 )x2 (y -2 )x y -3 =0 .∵x∈R且 y≠ 2 ,∴关于x的方程应有Δ =(y…  相似文献   

12.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

13.
一、构造一元二次方程法例1 已知x为实数,求函数y=3x2+x+2/x2+2x+1的最小值. 解:将原函数解析式变为关于x的二次方程: (y一3)x2+(2y-1)x+(y-2)=0. 因为x是实数,所以△≥0. 即(2y-1)2-4(y-3)(y-2)≥0. 解得y≥23/16.  相似文献   

14.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

15.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

16.
1.用倒数换元例1 解方程x2-x-12/x2-x-4=0. (2001年哈尔滨中考) 解设x2-x=y,则12/x2-x=12/y,于是原方程化为 y-12/y-4=0,变形得 y2-4y-12=0,解得 y1=6,y2=-2, 当y1=6,即x2-x-6=0时,解得 x1=3,x2=-2; 当y2=-2时,即x2-x+2=0时,△<0,此方程无实数根.  相似文献   

17.
<正>判别式法是高中求分式函数值域的常用方法.但由于对此方法的原理不很清楚,许多学生在解题过程中对一些条件不能正确的处理,从而导致解题出错.下面以几个题目为例,说明判别式法的原理以及在使用过程中一些要注意的地方.例1求函数f(x)=x2-2x-32x2+2x+1的值域.解:∵2x2+2x+1=2 x+()122+12>0恒成立,∴函数的定义域为R.图1将原函数等价变形为关于x的方程:(2y-1)x2+(2y+2)x+y+3=0……(*)(1)2y-1=0即y=12时,代入(*)式,求得x=-76.∴y可以取到12.  相似文献   

18.
第 3 1届西班牙数学奥林匹克第 2题为 :证明 :如果 (x x2 1) (y y2 1) =1,那么x y =0 .1 利用绝对值的性质证明 由已知得x x2 1=1y2 1 y,∴x x2 1=y2 1-y ,∴x y =y2 1-x2 1,∴x y =(y -x) (y x)y2 1 x2 1,∴ (x y) (1 x -yx2 1 y2 1) =0 .∵x2 1>|x| ,y2 1>|y| ,∴x2 1 y2 1>|x| |y|≥ |x -y| ,∴ |x -y|x2 1 y2 1<1,∴ 1 x -yx2 1 y2 1≠ 0 ,∴x y =0 .2 利用函数的性质证明 构造函数f(x) =lg(x x2 1)(x∈R) .可以证明函数f(x)在R上是奇函数且单调递增 .∵ (x x2 1) (y …  相似文献   

19.
一、分段函数的反函数分段函数的反函数一定也是分段函数,具体求时,一般是把每一段当作单个函数来求,最后写成分段函数的形式.在这个过程中要注意函数的定义域、值域与其反函数的值域、定义域的对应关系.例1设函数f(x)=-log3(x 1),x∈(6, ∞),3x-6,x∈(-∞,6]的反函数为f-1(x),若f-119=a,则f(a 4)=.解当x>6时f(x)<0,x≤6时f(x)>0.又f-119=a,∴f(a)=91,∴3a-6=91,解得a=4,∴f(a 4)=f(8)=-log3(8 1)=-2.例2求函数f(x)=x2-1,x∈[0,1),239-x2,x∈[-3,0)的反函数.解由y=x2-1(0≤x<1),解得x=1 y(-1≤y<0).又由y=239-x2(-3≤x<0)得x=-9-49y2(0≤y<2…  相似文献   

20.
一、先看几道用判别式解题造成错误的实例 例1 求函数的值域。(见苏州大学《中学数学》统辑部94年发行《高三数学与测试》一书p14页)。 为具体起见,改用数字系数,求函数的值域。 解:∵原函数的定义域是:{x|x≠1且x≠-3,x∈R},将原函数化为则有①当y≠1时,得(2y 3)~2 4(y-1)(3y 2)≥0’整理得(4y 1)~2≥0,故y为≠1的一切实数;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号