首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(a+b)/2≥ab1/2(a,b∈R+,当且仅当a=b时取"="号),(a+b)/2为a,b的算术平均数,ab1/2为a,b的几何平均数.此不等式即两个正数的算术平均数不小于它们的几何平均数的均值定理.应用均值定理时,需满足正(a,b均大于0)、定(a,b的和或积为定值)、等(a=b可以成立)三个条件.但是一些学生在应用解题时,常会出现貌似合理的解法,却造成矛盾或错误的结果等现象,究其原因,往往是对均值不等式中的"="的理解出现误区所致.实际上,均值不等式本身有其双重性.一方面,  相似文献   

2.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

3.
均值不等式√ab≤a+b/2(a≥0,b≥0),其中a+b/2称为a、b的算术平均数,√ab称为a、b的几何平均数,因而该定理又可叙述为:2个正数的算术平均数不小于它们的几何平均数,其中等号成立的前提是a=b.  相似文献   

4.
高中数学课本中有如下定理:如果a、b为正数,那么a b/2≥(ab)平方根(当且仅当a=b时取“=”号),该定理中的不等式通常被称为均值不等式。下面例谈考生在利用它求最大(小)值时,常常陷入的4个误区。  相似文献   

5.
题若正数a、b满足ab=a+b+3,求ab的最小值.分析这是一道典型的最值问题,容易想到用均值不等式,但我想可能存在别的解法.经过一番探索,我发现即使同样用均值不等式,解法也可不尽相同,直接用可以,对原式变形后再用也可以.我还注意到原式中的ab和a+b,自然想到了韦达定理,于是构造出一元二次方程求解,方法更妙.  相似文献   

6.
数学科《考试说明》要求学生:1理解不等式的性质及其证明;掌握简单不等式的解法;掌握分析法、综合法、比较法证明简单的不等式.2掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理及其应用.3理解不等式|a|-|b|≤|a+b|≤|a|+|b|.下面介绍高考不等式基础试题考点及解析.考点1 均值不等式定理简单应用例1 (1999年全国高考题)若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:运用均值不等式求和的最小值或积的最大值时,必须具备三个条件:各数为正;和或积为定值;等号应能成立.解:由均值不等式定理得ab=a+b+3≥2ab+3.即(ab+1)(…  相似文献   

7.
由教材例习题引发的思考   总被引:2,自引:0,他引:2  
“如果a ,b∈R ,那么a2 b2 ≥2ab(当且仅当a =b时取“=”号)”,这是高中数学一个非常重要的定理,有着广泛的应用.如果限定a ,b∈R ,则得到a b2 ≥ab ,其中a b2 、ab分别称为正数a、b的算术平均数与几何平均数.对此,《教师教学用书》要求:“掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.”教材在编写上也不涉及三个正数的情形,对于出现含三个正数的不等式,则是建立在两个正数的基础上,运用不等式的性质相加得到的,不属于三个正数平均值范畴.纵观不等式全章,我发现在所提供的两个正数不等式中,有…  相似文献   

8.
利用均值不等式求最值要注意以下三点:(1)“正”指均值不等式成立的前提条件是a,b∈R~ ,即a,b为正数;(2)“定”指用均值不等式时需要通过补项、拆项、平衡系数等方法凑成和(或积)为定值;(3)“等”指用均值不等式求最值时,一定  相似文献   

9.
最值问题是中学数学的重要内容之一,它分布在各个知识板块.学生在学到"均值不等式的应用"时,常感觉到"均值不等式a+b2≥ab/2/1(a〉0,b〉0,当且仅当a=b时等号成立)"这一知识极易理解,但在解题过程中却往往不知道如何运用.在教学中,我整理了均值不等式求最值的解法,以解除学生的学习困惑.  相似文献   

10.
平面几何中有切割弦定理:如图,圆O的切线PA(A为切点)与割线PBC满足关系PA2=PB·PC. 该定理在不等式求最值、求轨迹方程等方面有许多巧妙应用,如均值定理(a b)/(2)≥(ab)(a,b>0)的证明:在上图中割线PBC过圆心O时,设PB=a,PC=b,则PO=(a b)/(2),由切割弦定理PA=(ab),显然PO>PA,再结合a=b有(a b)/(2)≥(ab). 再举几例:  相似文献   

11.
利用和积不等式“(a b)/2≥(ab)~(1/2)”求最值时,我们熟知有如下定理: 定理一若两个正变数a、b之积a b=P是定值,则当a=b时,其和S=a b有最小值, S最小值=2P~(1/2)。初学者在应用本定理解题时,有一个常犯的错误:他们往往只考虑“ab=P为定值”的先决条件,而忽视“a=b”这另一个先决条件,致使造成不少有关问题的错解。  相似文献   

12.
题目已知a〉b〉0,求a^2+16/b(a-b)的最小值. 思路1直接应用二元均值不等式a^2+16/b(a-b)≥2√a^2·16/b(a-b) 求最值,解题难点在于不等式右端不是定值,或者继续应用均值不等式但不能满足取等条件,  相似文献   

13.
均值不等式的定理: 如果a,b是正数,那么a b/2≥ab(当且仅当a=b时取"="号),我们称a b为a,b的算术平均数,称√ab为a,b的几何平均数.  相似文献   

14.
“两个正数的算数平均数不小于它们的几何平均数”这一结论通常叫做均值不等式.它告诉我们了一种求最值的方法.而教材中的很多习题正是这  相似文献   

15.
沈红霞 《数学教学》2005,(10):30-32
均值不等式a+b≥2√ab(a、b∈R^+)不仅可用于证明不等式,也可用于求某些函数的最值,在中学代数里有着非常重要的地位和作用.用均值不等式求最值,总是在当且仅当a=6成立时函数才能取得最值.如。  相似文献   

16.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

17.
均值不等式是一组很重要的不等式,在证明不等式中有着广泛的应用.在有些条件不等式的证明当中,可以利用均值不等式等号成立的条件,构造出使各项都相等的“平衡值”,如:a 6=1,则a,b的平衡值是1/2;1/a,1/b的平衡值是2;a2 b2的平衡值就是  相似文献   

18.
<正>均值不等式是高中数学不等式的一个重要内容,是历年高考与竞赛的命题热点和重点考查内容之一,它在证明不等式、求最值以及实际问题中有着广泛的应用.本文就均值不等式搭桥妙解数学高考题与竞赛题举例介绍如下,以作探讨.例1已知a,b为正实数,2b+ab+a=30,求关于a、b的函数y=1/ab的最小值.分析这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元  相似文献   

19.
均值不等式是高中数学中非常重要的一个不等式类型,要求学生能利用均值不等式a+b≥2√ab,已知a与b的积为定值会求a+b的最值;能充分理解均值不等式的适用条件"一正二定三相等".本文将通过举例来说明如何灵活利用均值不等式求函数的最值.  相似文献   

20.
基本不等式(一些教材上也称重要不等式或均值不等式)可以叙述为:两个正数的算术平均数不小于它们的几何平均数,即a+b2≥槡ab(a≥0,b≥0)(这里a,b可以为0).基  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号