首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于锁相环(phase loop lock,PLL)频率合成原理,研究了一种采用MC145170和MC12148实现VHF波段频率合成器的方法,提出了硬件电路设计方案,详述了关键电路的硬件设计。该频率合成器输出频率为45MHz-88MHz,实验结果表明该频率合成器输出功率大于7dBm,输出信号相位噪声优于-84dBc/Hz@10kHz,近端杂散抑制度大于-67dBc。  相似文献   

2.
李素芬 《内江科技》2007,28(9):95-95,123
在讨论电位型电化学传感器高阻抗特性及输出信号噪声的特点的基础上,从软件和硬件两个方面对输出信号进行了处理,达到了较好的输出效果.  相似文献   

3.
王振 《大众科技》2009,(6):17-18
窄脉冲的生成是超宽带穿墙探测系统中的要解决的关键问题之一。在比较了模拟方法与数字方法后,介绍了一种利用高速数字逻辑器件产生超宽带窄脉冲信号的电路,该电路可产生中心频率约为810MHz、重复频率为10MHz的窄脉冲信号,其峰值功率约为-38dBm。文章深入分析讨论了电路原理与设计方法,并对该电路进行了制作和测试,最后给出了测试结果。  相似文献   

4.
陈羽  邓正森 《大众科技》2010,(10):13-14
通信系统中的时钟电路为整个系统的工作提供了基本参考时钟,主要用于实现收发数据同步和信号采样等功能。随着通信系统中的时钟速度的提高,多时钟频率以及多输出电平模式的设置,对时钟电路相位噪声和抖动的分析尤其重要。文章从理论上分析了时钟抖动产生机理、统计特性、计算方法以及抖动与相位噪声之间的关系,并从实践角度总结提高时钟质量,降低抖动和相位噪声的方法。  相似文献   

5.
相位编码雷达信号时宽带宽积大的特点避免了雷达高距离分辨力和大探测距离的矛盾,使得雷达抗干扰和低截获概率特性优良。本文从干扰原理、干扰仿真、干扰脉压输出三方面研究了瞄频噪声、噪声调频、灵巧噪声三种典型噪声干扰对相位编码雷达的干扰效果。仿真分析结果表明,灵巧噪声较另外两种干扰脉冲压缩处理增益大,能显著抬高噪声基底,且具有自动瞄准雷达工作频率的优点;瞄频噪声能明显提高噪声基底,干扰利用率高,但需要精确的频率引导为前提;噪声调频干扰可以产生宽频带高功率干扰,兼备阻塞式干扰和瞄频式干扰的特性。  相似文献   

6.
在音频设备中,我们最常见的接口是非平衡接口,而平衡接口更多应用于专业设备。从信号平衡输入、平衡功率放大再到平衡输出,应用到耳机上会带来怎样的优点?为耳机提供驱动信号的设备就是耳机功率放大器,要让耳机充分发挥性能,必须提供必要的驱动,本文就将耳放改为平衡功放输出,介绍平衡功放推耳机的原理及相关条件要求,在一定程度上研究平衡功放输出的作用。  相似文献   

7.
陆阳 《科技风》2014,(4):65-66
多模式射频功放需要在不同的工作模式下按要求将连续波调制为指定的脉冲形式,并将射频信号放大至该模式指定的功率。以新型L波段多模式射频功放为例,对比了传统射频功放的缺点,介绍了各工作模式独有的射频脉冲信号特点。在此基础上重点从脉冲调制信号的数字化产生、脉冲成形单元及数字化正、反向控制单元等几方面介绍了多模式射频功放的控制原理。该型功放可满足不同信号输入功率下各模式信号的成形和放大要求,并能够自动修正由于系统温度、输入信号频率、器件老化等因素引发的指标偏差。  相似文献   

8.
罗方 《科技风》2012,(16):67
小波变换在信号去噪的应用中有很大的优势,它弥补了傅里叶变换在信号去噪中的局限。小波变换在时间域和频率域都具有良好的局部特性,可以聚焦到信号的任意细节。根据信号的特性利用小波变换的处理方法能够有效的将有用信号与噪声分离开来从而达到去噪的效果。  相似文献   

9.
论述了采用MAX038芯片设计数字函数信号发生器的原理以及整机的结构设计。对其振荡频率控制、信号输出幅度控制以及频率和幅度数显的实现作了较详细的论述。该函数信号发生器可输出三角波,方波和正弦波。输出频率范围为2Hz至20MHz。输出幅度的峰峰值为Vp-p=2V,输出直流电平调节:-6V~+6V;输出阻抗:50Ω。  相似文献   

10.
介绍了声音信号在电缆路径检测仪中的作用。分析了以前实现动态频率输入、固定频率信号输出技术的方法,并指出了存在的问题,提出了采用AC—DC转换芯AD637、AVR单片机和D/A的方法,实现宽范围动态信号输入,幅度随输入信号变化的固定频率信号输出,并在实际中得到了很好的应用。  相似文献   

11.
在测量微弱信号被掩盖在强噪声中的信号时,锁相放大器(Lock-in Amplifier,LIA)表现出了良好的性能.但是由于其本生存在中心频率不稳定、带宽不能太窄及对信号缺乏跟踪能力等缺点,造成对测量微弱信号的限制.对锁相放大器进行一些分析的基础上,设计出一个双相位锁相放大器(Dual Phrase Lock-in Amplifier),并用Pspice/OrCAD进行了实验性的论证.结果表明该放大器可以实现微伏(μV)级别的信号识别,噪声信号的均方根值约为1mV,幅值识别准确率在0.5%以内.  相似文献   

12.
为了实现在强噪声背景下检测已知频率的微弱信号,本设计主要利用锁相放大的方法进行微弱信号检测的电路设计方案,以带通滤波电路、移相电路、相敏检波电路、低通滤波电路实现锁相放大的功能;加法器和电阻分压网络为辅助电路;MSP430G2553单片机实现检测输出信号的显示功能。该系统可以应用多领域的微弱信号检测环节中。  相似文献   

13.
谭萍 《科技广场》2012,(1):195-198
在通信收发系统中,功率放大器位于发射机末端,其作用是将高频已调波信号进行功率放大,以满足发射机发送功率的要求,然后经过天线将高频功率信号辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。本文叙述了功率放大器的特性及发展历程,着重分析了射频功放的非线性及功放线性化的几种常用技术。  相似文献   

14.
文章介绍了一种X波段频率合成器的设计方法,该方法是通过混合式频率合成方法优化M/N参数,以减小数字鉴相器、分频器等部件附加相位噪声对输出相位噪声性能的影响,使该频率合成器有低杂散、低相位噪声、小型化等特点,具有良好的工程应用价值。  相似文献   

15.
基于DDS芯片AD9833的低频信号发生器   总被引:1,自引:0,他引:1  
覃晓  蒋荣萍 《大众科技》2008,(10):29-31
文章介绍一种基于直接数字频率合成技术(DDS)的低频信号发生器,该系统采用AD9833与ATmega128单片机相结合的方法,以单片机ATmega128为进程控制和任务调度的核心,以DDS芯片AD9833为直接数字频率合成器,实现了输出频率在10Hz~2MHz范围可调,输出信号稳定度优于10。的正弦波、方波和三角波信号。实验证明,此设计硬件电路结构简单,软件控制灵活,输出信号频率稳定,分辨率高。  相似文献   

16.
《科技风》2019,(9)
介绍了一种具有高输出功率的功率放大器,设计利用的是两路伪差分电路结构,每一条支路都由两级电路构成,第一级电路为驱动级电路,第二级电路为功率级电路。电路的匹配网络由传输线和电容构成,以保证信号能够高效率地传输。用威尔金森功分器将两支路结合在一起,通过调试功率分配器使整体电路到达最优化。功率放大器属于AB类放大器,采用0.13um Si Ge Bi CMOS工艺,在中心频率30GHz时得到整体电路后仿真结果:输出1dB压缩点OP1dB=22.91dBm,功率增益GP=25.52dB。  相似文献   

17.
本文采用Lab VIEW作为软件平台,设计开发了一个基于声卡的虚拟信号发生器。该虚拟信号发生器不仅可以实现正弦波、三角波、方波、锯齿波和白噪声等信号的输出,而且可以实现正弦扫频信号和混合单频信号的输出,为被测电路产生更多更全面的电测试信号。该虚拟信号发生器的输出采用声卡输出,不再额外增加硬件设备,只要有PC机就可以使用,使得虚拟仪器更加的方便快捷。  相似文献   

18.
<正>通常,噪声主要是频率较高的信号。将含噪声的信号进行FFT正变换,滤波除去噪声信号,保留有用信号,再通过FFT逆变换复现原始信号是一种传统的降噪方法。此方法能把高频的噪声滤除,但使得高频的有用信号失真。具有多分辨率分析(Multi-Resolution Analysis)的特点的小波变换是一种信号的时频分析方法。在时域和频域内,小波变换具有分析信号局部特点的功能,是一种时频率窗口均可改变的分析方  相似文献   

19.
胡洪  卢婧 《科教文汇》2013,(25):108-109
信号源是电子系统中非常重要的部件,常常被称作电子系统的心脏。信号源有多种产生方式,本文所采用的是频率合成技术。为了克服DDS和PLL的缺点,可以采用两者相结合应用的频率合成方案。本文采用的是DDS激励PLL的方式实现1200MHz-1300MHz的信号频率输出,分析了电路的主要组成单元,对重要的技术和电路单元作了比较详细的说明。涉及关键器件的选择,电路的仿真,噪声分析。本文的最后为分析总结。  相似文献   

20.
研究振弦式传感器频率测量问题。针对振弦式传感器输出信号微弱、容易受到干扰而造成的测量精度下降问题,提出了一种基于锁相环的新型测频电路,论证了锁相环在电路中在抑制噪声以及提高测频精度的有效作用。锁相环技术用于振弦式传感器测频系统中具有良好的稳态精度和较高的动态性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号