首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to the demand for sound science assessments, this article presents the development of a latent construct called knowledge integration as an effective measure of science inquiry. Knowledge integration assessments ask students to link, distinguish, evaluate, and organize their ideas about complex scientific topics. The article focuses on assessment topics commonly taught in 6th- through 12th-grade classes. Items from both published standardized tests and previous knowledge integration research were examined in 6 subject-area tests. Results from Rasch partial credit analyses revealed that the tests exhibited satisfactory psychometric properties with respect to internal consistency, item fit, weighted likelihood estimates, discrimination, and differential item functioning. Compared with items coded using dichotomous scoring rubrics, those coded with the knowledge integration rubrics yielded significantly higher discrimination indexes. The knowledge integration assessment tasks, analyzed using knowledge integration scoring rubrics, demonstrate strong promise as effective measures of complex science reasoning in varied science domains.  相似文献   

2.
Scientific argumentation is one of the core practices for teachers to implement in science classrooms. We developed a computer-based formative assessment to support students’ construction and revision of scientific arguments. The assessment is built upon automated scoring of students’ arguments and provides feedback to students and teachers. Preliminary validity evidence was collected in this study to support the use of automated scoring in this formative assessment. The results showed satisfactory psychometric properties related to this formative assessment. The automated scores showed satisfactory agreement with human scores, but small discrepancies still existed. Automated scores and feedback encouraged students to revise their answers. Students’ scientific argumentation skills improved during the revision process. These findings provided preliminary evident to support the use of automated scoring in the formative assessment to diagnose and enhance students’ argumentation skills in the context of climate change in secondary school science classrooms.  相似文献   

3.
Content‐based automated scoring has been applied in a variety of science domains. However, many prior applications involved simplified scoring rubrics without considering rubrics representing multiple levels of understanding. This study tested a concept‐based scoring tool for content‐based scoring, c‐rater?, for four science items with rubrics aiming to differentiate among multiple levels of understanding. The items showed moderate to good agreement with human scores. The findings suggest that automated scoring has the potential to score constructed‐response items with complex scoring rubrics, but in its current design cannot replace human raters. This article discusses sources of disagreement and factors that could potentially improve the accuracy of concept‐based automated scoring.  相似文献   

4.
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students’ emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers’ instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students’ emergent understandings, and how teacher–researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers’ instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.  相似文献   

5.
Science learning environments should provide opportunities for students to make sense of and enhance their understanding of disciplinary concepts. Teachers can support students’ sense-making by engaging and responding to their ideas through high-leverage instructional practices such as formative assessment (FA). However, past research has shown that teachers may not understand FA, how to implement it, or have sufficient content knowledge to use it effectively. Few studies have investigated how teachers gather information to evaluate students’ ideas or how content knowledge factors into those decisions, particularly within the life science discipline. We designed a study embedded in a multi-year professional development program that supported elementary teachers’ development of disciplinary knowledge and FA practices within science instruction. Study findings illustrate how elementary teachers’ life science content knowledge influences their evaluation of students’ ideas. Teachers with higher levels of life science content knowledge more effectively evaluated students’ ideas than teachers with lower levels of content knowledge. Teachers with higher content exam scores discussed both content and student understanding to a greater extent, and their analyses of students’ ideas were more scientifically accurate compared to teachers with lower scores. These findings contribute to theory and practice around science teacher education, professional development, and curriculum development.  相似文献   

6.
Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.  相似文献   

7.
Background: There has been an increasing emphasis on empowering pre-service and in-service science teachers to attend student reasoning and use formative assessments to guide student learning in recent years. Purpose: The purpose of this study was to explore pre-service science teachers’ pedagogical capacity for formative assessment. Sample: This study took place in Turkey. The participants include 53 pre-service science teachers in their final year of schooling. All but two of the participants are female. Design and methods: We used a mixed-methods methodology in pursing this inquiry. Participants analyzed 28 responses to seven two-tiered questions given by four students of different ability levels. We explored their ability to identify the strengths and weaknesses in students’ answers. We paid particular attention to the things that the pre-service science teachers noticed in students’ explanations, the types of inferences they made about students’ conceptual understanding, and the affordances of pedagogical decisions they made. Results: The results show that the majority of participants made an evaluative judgment (i.e. the answer is correct or incorrect) in their analyses of students’ answers. Similarly, the majority of the participants recognized the type of mistake that the students made. However, they failed to successfully elaborate on fallacies, limitations, or strengths in student reasoning. We also asked the participants to make pedagogical decisions related to what needs to be done next in order to help the students to achieve academic objectives. Results show that 8% of the recommended instructional strategies were of no affordance, 64% of low-affordance, and 28% were of high affordance in terms of helping students achieve the academic objectives. Conclusion: If our goal is to improve pre-service science teachers’ noticing skills, and the affordance of feedback that they provide, engaging them in activities that asks them to attend to students’ ideas and reasoning may be useful.  相似文献   

8.
Abstract

Assessment rubrics intend to make criteria explicit to students. However, an understanding of assessment criteria requires tacit knowledge about which students may not be aware. The lack of such knowledge is notable in undergraduate health science students taking a compulsory course in the social sciences. This study performed a content analysis of how 1st year health sciences students interpret a SOLO assessment rubric for a sociology ‘reflection piece’ essay. The findings suggest that empiricism, standardisation and lack of tacit knowledge limit students’ ways of reasoning about the rubric. These limitations manifest in a methodical difference between students’ expectations and lecturers’ intentions of using a rubric. This difference is illustrated by the students’ need for procedural knowledge and the lecturer’s expectation of conceptual knowledge. These differences have implications for teaching, learning and assessment in health sciences undergraduate education. The findings also justify a dialogical approach to assessments through facilitating students’ epistemological development.  相似文献   

9.
According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content knowledge. More importantly, teachers’ limited conceptual understanding of the core ideas automatically leads to a lack of pedagogical content knowledge. This mixed methods study aims to explore the ways in which current secondary schooling, especially the small numbers of highly qualified ESS teachers in the USA, might influence students’ learning of the discipline. To gain a better understanding of the current conditions of ESS education in secondary schools, in the first phase, we qualitatively examined a sample middle and high school ESS textbook to explore how the big ideas of ESS, particularly geological time, are represented. In the second phase, we quantitatively analyzed the participating college students’ conceptual understanding of geological time by comparing those who had said they had had secondary school ESS learning experience with those who did not. Additionally, college students’ perceptions on learning and teaching ESS are discussed. Findings from both the qualitative and quantitative phases indicate participating students’ ESS learning experience in their secondary schools seemed to have limited or little influence on their conceptual understandings of the discipline. We believe that these results reflect the current ESS education status, connected with the declining numbers of highly qualified ESS teachers in secondary schools.  相似文献   

10.
A tool for self assessment in secondary art education was developed and tested. The tool includes rubrics for assessing production and reception activities in art education and consists of visual and text rubrics. The criteria in the rubrics are based on the Common European Framework of Reference for Visual Literacy which was developed by The European Network of Visual Literacy (ENViL). The way teachers and students use the rubrics, whether they consider them helpful and to what extent students’ self‐assessments are in line with teacher assessments was studied. It was concluded that teachers work with the rubrics intensively and both students and teachers appreciate its visual form. However, it was found that the agreement between teachers and students about the students’ scores was moderate and needed to improve. The results show that it is untrue that students, or boys in particular, overestimate their own performance in art education. The current study contributes to the development of feasible and valid assessment criteria and instruments in secondary art education.  相似文献   

11.
ABSTRACT— We begin this article by situating a methodology called developmental maieutics in the emerging field of mind, brain, and education. Then, we describe aspects of a project in which we collaborated with a group of physical science teachers to design developmentally informed activities and assessments for a unit on energy. Pen-and-paper assessments, called teasers , were employed, along with interviews, to study how students learned about the physics of energy. Results were used to describe students' learning pathways and to design a scoring rubric for teacher use. We hypothesized that (a) teasers, by themselves, could be used effectively to evaluate the developmental level of students' reasoning about energy and (b) teachers could employ the scoring rubric with minimal instruction. Encouraged by our findings, we went on to create a freely available online version of the energy teaser , including a new rubric designed to improve the accuracy with which teachers can assess the developmental level of students' energy conceptions.  相似文献   

12.
Computer scoring of student written essays about an inquiry topic can be used to diagnose student progress both to alert teachers to struggling students and to generate automated guidance. We identify promising ways for teachers to add value to automated guidance to improve student learning. Three teachers from two schools and their 386 students participated. We draw on evidence from student progress, observations of how teachers interact with students, and reactions of teachers. The findings suggest that alerts for teachers prompted rich teacher–student conversations about energy in photosynthesis. In one school, the combination of the automated guidance plus teacher guidance was more effective for student science learning than two rounds of personalized, automated guidance. In the other school, both approaches resulted in equal learning gains. These findings suggest optimal combinations of automated guidance and teacher guidance to support students to revise explanations during inquiry and build integrated understanding of science.  相似文献   

13.
The recent literature has shown the importance of preservice elementary science teachers (PESTs) having a deep understanding of argumentation, as this factor may affect the nature of the class activities that are taught and what students learn. A lack of understanding of this factor may represent an obstacle in the development of science education programmes in line with the development of scientific competences. This paper presents the results of the design and implementation of a training programme of 6 sessions (12 h of class participation plus 8 h of personal homework) on argumentation. The programme was carried out by 57 Spanish PESTs from Malaga, Spain. The training programme incorporates the innovative use of certain strategies to improve competence in argumentation, such as teaching PESTs to identify the elements of arguments in order to design assessment rubrics or by including peer assessment during evaluation with and without rubrics. The results obtained on implementing the training programme were evaluated based on the development of PESTs’ argumentation competence using Toulmin’s argumentative model. Data collection methods involved two tasks carried out at the beginning and the end of the programme, i.e., pre- and post-test, respectively. The conclusion of the study is that students made significant progress in their argumentation competence on completing the course. In addition, PESTs who followed the training programme achieved statistically better results at the end than those in the control group (n = 41), who followed a traditional teaching programme. A 6-month transfer task showed a slight improvement for the PESTs of the experimental group in relation to the control group in their ability to transfer argumentation to practice.  相似文献   

14.
ABSTRACT

In this study, we reviewed 76 journal articles on employing drawing assessment as a research tool in science education. Findings from the systematic review suggest four justifications for using drawing as a type of research tool, including assessment via drawing as (a) an alternative method considering young participants’ verbal or writing abilities, and affective or economic reasons, (b) a unique method that can reveal aspects not easily measured by other methods, (c) a major method that reflects characteristics of science subjects, and (d) a formative assessment to diagnose students’ ideas to benefit their learning. Furthermore, five research trends of studies using drawing as assessment tools are identified, including: (a) students’ conceptions of scientists from the Draw-a-Scientist-Test (DAST) and evolving studies, (b) students’ understanding or mental models of science concepts, (c) participants’ conceptions of science learning or teaching, (d) students’ inquiry abilities and modelling skills via drawing, and (e) technology to support drawing. For each trend, we synthesised and commented on the current findings. A framework conceptualising phases and issues when designing research and instruments employing drawing assessments is proposed. The review provides insights into the design and future direction of research employing drawing assessments in science education.  相似文献   

15.
Rubrics are assessment tools that help students gain complex competencies. Our quasi-experimental study aimed to evaluate whether rubrics help teachers teach and assess mathematical reasoning in primary school and whether such an instrument might support student learning. In two Swiss cantons, 762 students in 44 5th- and 6th-grade primary classes worked on their reasoning competencies, and half of them additionally employed our standards-based rubric. All of the teachers received a 1-day training and participated in the final project evaluation. To standardise and support the teachers during the implementation phase, they received a detailed curriculum. An achievement test and questionnaires for students and teachers were administered before and at the end of the intervention. The results of our quantitative longitudinal analyses indicate that the rubric fosters the teachers’ perceived diagnostic skills but only indirectly impacts their use of formative feedback. Based on the students’ perceptions, however, we observed a direct effect of the rubric on formative feedback and student self-assessment. Effects on students’ outcomes could not be observed, but there are indications of effects mediated by self-regulation and self-efficacy.  相似文献   

16.
This study illustrated a pathway of growth that a preservice teacher might traverse when learning to use and develop equitable assessments (EA). The study is rare in that it looks at the development of preservice teachers’ understanding and ability to design EA. I examined the understanding and implementation of EA of 23 secondary preservice teachers within two classes. The methods classes focused on the academic content area of science. Participants’ journals, teaching philosophies, and inquiry-based science units served as data sources. Participants progressed from a simple view of EA as “fairness” to a more sophisticated view of EA, including: ways to increase fairness, the importance of challenging students, and using assessments for learning. Results also showed changes in preservice teachers’ views of learners and the purpose of assessment. While understanding developed robustly, teachers’ assessment plans in their units were not as strong. Teacher education programs need to place more emphasis on developing critical understanding of EA practices to meet the needs of diverse learners.  相似文献   

17.
ABSTRACT

Machine learning (ML) is an emergent computerised technology that relies on algorithms built by ‘learning’ from training data rather than ‘instruction’, which holds great potential to revolutionise science assessment. This study systematically reviewed 49 articles regarding ML-based science assessment through a triangle framework with technical, validity, and pedagogical features on three vertices. We found that a majority of the studies focused on the validity vertex, as compared to the other two vertices. The existing studies primarily involve text recognition, classification, and scoring with an emphasis on constructing scientific explanations, with a vast range of human-machine agreement measures. To achieve the agreement measures, most of the studies employed a cross-validation method, rather than self- or split-validation. ML allows complex assessments to be used by teachers without the burden of human scoring, saving both time and cost. Most studies used supervised ML, which relies on extraction of attributes from student work that was first coded by humans to achieve automaticity, rather than semi- or unsupervised ML. We found that 24 studies were explicitly embedded in science learning activities, such as scientific inquiry and argumentation, to provide feedback or learning guidance. This study identifies existing research gaps and suggests that all three vertices of the ML triangle should be addressed in future assessment studies, with an emphasis on the pedagogy and technology features.  相似文献   

18.
This study examined the effects of professional development on teachers’ assessment literacy between two groups of teachers: (1) teachers who were involved in ongoing and sustained professional development in designing authentic classroom assessment and rubrics; and (2) teachers who were given only short-term, one-shot professional development workshops in authentic assessment. The participating teachers taught Year 4 and 5 English, science, and mathematics. The findings showed that the assessment literacy of teachers who were involved in ongoing, sustained professional development had increased significantly during the second year of study. These teachers had also gained a better understanding of authentic assessment.  相似文献   

19.
To improve assessments of academic achievement, test developers have been urged to use an “assessment triangle” that starts with research‐based models of cognition and learning [NRC (2001) Knowing what students know: The science and design of educational assessment. Washington, DC: National Academy Press]. This approach has been successful in designing high‐quality reading and math assessments, but less progress has been made for assessments in content‐rich sciences such as biology. To rectify this situation, we applied the “assessment triangle” to design and evaluate new items for an instrument (ACORNS, Assessing Contextual Reasoning about Natural Selection) that had been proposed to assess students' use of natural selection to explain evolutionary change. Design and scoring of items was explicitly guided by a cognitive model that reflected four psychological principles: with development of expertise, (1) core concepts facilitate long‐term recall, (2) causally‐central features become weighted more strongly in explaining phenomena, (3) normative ideas co‐exist but increasingly outcompete naive ideas in reasoning, and (4) knowledge becomes more abstract and less specific to the learning situation. We conducted an evaluation study with 320 students to examine whether scores from our new ACORNS items could detect gradations of expertise, provide insight into thinking about evolutionary change, and predict teachers' assessments of student achievement. Findings were consistent with our cognitive model, and ACORNS was revealing about undergraduates' thinking about evolutionary change. Results indicated that (1) causally‐central concepts of evolution by natural selection typically co‐existed and competed with the presence of naïve ideas in all students' explanations, with naïve ideas being especially prevalent in low‐performers' explanations; (2) causally‐central concepts were elicited most frequently when students were asked to explain evolution of animals and familiar plants, with influence of superficial features being strongest for low‐performers; and (3) ACORNS scores accurately predicted students' later achievement in a college‐level evolution course. Together, findings illustrate usefulness of cognitive models in designing instruments intended to capture students' developing expertise. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 744–777, 2012  相似文献   

20.
Our study addresses the need for new approaches to prepare novice elementary teachers to teach both science and engineering, and for new tools to measure how well those approaches are working. This in particular would inform the teacher educators of the extent to which novice teachers are developing expertise in facilitating their students’ engineering design work. One important dimension to measure is novice teachers’ abilities to notice the substance of student thinking and to respond in productive ways. This teacher noticing is particularly important in science and engineering education, where students’ initial, idiosyncratic ideas and practices influence the likelihood that particular instructional strategies will help them learn. This paper describes evidence of validity and reliability for the Video Case Diagnosis (VCD) task, a new instrument for measuring pre-service elementary teachers’ engineering teaching responsiveness. To complete the VCD, participants view a 6-min video episode of children solving an engineering design problem, describe in writing what they notice about the students’ science ideas and engineering practices, and propose how a teacher could productively respond to the students. The rubric for scoring VCD responses allowed two independent scorers to achieve inter-rater reliability. Content analysis of the video episode, systematic review of literature on science and engineering practices, and solicitation of external expert educator responses establish content validity for VCD. Field test results with three different participant groups who have different levels of engineering education experience offer evidence of construct validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号